Abgottspon, H., Andersson, G.: Approach of integrating ancillary services into a medium-term hydro optimization. In: XII SEPOPE: Symposium of Specialists in Electric Operational and Expansion Planning. Rio de Janiero (2012)
Becker, W., Cutler, D., Anderson, K., Olis, D.: REopt: enabling renewable energy, storage, and combined heat & power. In: Proceedings of the ACEEE 2019 summer study on energy efficiency in industry. Portland, OR (2019)
Blair, N., DiOrio, N., Freeman, J., Gilman, P., Janzou, S., Neises, T., Wagner, M.: System Advisor Model (SAM) General Description. National Renewable Energy Laboratory, Golden, CO. Retrieved 2019, from https://www.nrel.gov/docs/fy18osti/70414.pdf (2018). Accessed 7 Dec 2019
Bowman, M.: EIA projects that renewables will provide nearly half of world electricity by 2050. U.S. Energy Information Administration. Retrieved 12 7, 2019, from https://www.eia.gov/todayinenergy/detail.php?id=41533 (2019). Accessed 7 Dec 2019
Coffrin, C., Hijazi, H., Van Hentenryck, P.: Network flow and copper plate relaxations for AC transmission systems. In: Power Systems Computation Conference, pp. 1–8. IEEE, Piscataway (2016)
Connolly, D., Lund, H., Mathiesen, B., Leahy, M.: A review of computer tools for analysing the integration of renewable energy into various energy systems. Appl. Energy 87(4), 1059–1082 (2010). https://doi.org/10.1016/j.apenergy.2009.09.026
Article
Google Scholar
Cuesta, M., Castillo-Calzadilla, T., Borges, C.: A critical analysis on hybrid renewable energy modeling tools: an emerging opportunity to include social indicators to optimise systems in small communities. Renew. Sustain. Energy Rev. (2020). https://doi.org/10.1016/j.rser.2019.109691
Article
Google Scholar
Cutler, D., Olis, D., Elgqvist, E., Li, X., Laws, N., Diorio, N., Anderson, K.: REopt: A Platform for Energy System Integration and Optimization. National Renewable Energy Laboratory, Golden (2017)
Google Scholar
Deru, M., Field, K., Studer, D., Benne, K., Griffith, B., Torcellini, P., Crawley, D.: US Department of Energy Commercial Reference Building Models of the National Building Stock. NREL, Golden (2011)
Book
Google Scholar
Dobos, A.P.: PVWatts Version 5 Manual. Golden, CO: National Renewable Energy Laboratory. Retrieved 04 10, 2020, from https://pvwatts.nrel.gov/downloads/pvwattsv5.pdf (2014). Accessed 10 Apr 2020
Draxl, C., Clifon, A., Hodge, B.-M., McCaa, J.: The Wind Integration National Dataset (WIND) Toolkit. Appl. Energy 151, 355–366 (2015). https://doi.org/10.1016/j.apenergy.2015.03.121
Article
Google Scholar
Dunning, I., Huchette, J., Lubin, M.: JuMP: a modeling language for mathematical optimization. Soc. Ind. Appl. Math. Rev. 59, 295–320 (2017). https://doi.org/10.1137/15M1020575
MathSciNet
Article
MATH
Google Scholar
EIA: EIA projects nearly 50% increase in world energy usage by 2050, led by growth in Asia. eia.gov. Retrieved 06 18, 2020, from https://www.eia.gov/todayinenergy/detail.php?id=41433 (2019). Accessed 18 June 2020
Energy, D.O.: Commercial Reference Buildings. (Office of Energy Efficiency & Renewable Energy) Retrieved 04 15, 2020, from https://www.energy.gov/eere/buildings/commercial-reference-buildings (n.d.). Accessed 15 Apr 2020
EPA: Fuel and Carbon Dioxide Emissions Savings Calculation Methodology for Combined Heat and Power Systems. U.S. Environmental Protection Agency Combined Heat And Power Partnership. Retrieved from https://www.epa.gov/sites/production/files/2015-07/documents/fuel_and_carbon_dioxide_emissions_savings_calculation_methodology_for_combined_heat_and_power_systems.pdf (2015)
EPA: AVoided Emissions and geneRation Tool (AVERT). U.S. Environmental Protection Agency Office of Air and Radiation Climate Protection Partnerships Division. Retrieved from https://www.epa.gov/sites/production/files/2019-05/documents/avert_user_manual_05-20-19_508.pdf (2019). Accessed 15 Apr 2020
EPRI: Storage Value Estimation Tool (StorageVET). Retrieved 2019, from https://storagevet.com/ (2016). Accessed 7 Dec 2020
Fathima, A.H., Palanisamy, K.: Optimization in microgrids with hybrid energy systems—a review. Renew. Sustain. Energy Rev. 45, 431–446 (2015). https://doi.org/10.1016/j.rser.2015.01.059
Article
Google Scholar
Geli: Analyze and Design. Retrieved from https://geli.net/geli-platform/analyze-and-design/ (2018). Accessed 11 Nov 2018
Henbest, S.: Energy to 2040—Faster Shift to Clean, Dynamic, Distributed. BloombergNEF. Retrieved 12 7, 2019, from https://about.bnef.com/blog/henbest-energy-2040-faster-shift-clean-dynamic-distributed/ (2017). Accessed 7 Dec 2019
Hirst, E., Brendan, K.: Electric-Power Ancilary Services. Oak Ridge National Laboratory, Oak Ridge (1996)
Book
Google Scholar
Krah, K.: Behind-the-Meter Solar + Storage Modeling Tool Comparison. In: 47th Annual National Solar Conference and Summit. Boudler, CO. Retrieved from https://www.osti.gov/biblio/1507688-behind-meter-solar-storage-modeling-tool-comparison (2019). Accessed 7 Dec 2019
Lambert, T., Gilman, P., Lillenthal, P.: Micropower system modeling with HOMER. Integr. Altern. Sources Energy 1(1), 379–385 (2006)
Article
Google Scholar
Luna-Rubio, R., Trejo-Perea, M., Vargas-Vázquez, D., Rios-Moreno, G.: Optimal sizing of renewable hybrids energy systems: a review of methodologies. Sol. Energy 86(4), 1077–1088 (2012). https://doi.org/10.1016/j.solener.2011.10.016
Article
Google Scholar
Marcy, C.: Today in Energy. U.S. Energy Information Administration. Retrieved 12 05, 2019, from https://www.eia.gov/todayinenergy/detail.php?id=38752 (2019)
Mishra, S., Anderson, K.: Probabilistic resilience of DER systems—a simulation assisted optimization approach. IEEE PES ISGT NA. IEEE. Retrieved from https://arxiv.org/ftp/arxiv/papers/2008/2008.05455.pdf (2021)
Narimani, M.R., Asghari, B., Sharma, R.: Optimal sizing and operation of energy storage for demand charge management and PV utilization. In: 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D). Denver, CO, USA. (2018). https://doi.org/10.1109/TDC.2018.8440302
Neukomm, M., Nubbe, V., Fares, R.: Grid-interactive Efficient Buildings. Energy Efficiency & Renewable Energy. U.S. Department of Energy. Retrieved from https://www.energy.gov/sites/prod/files/2019/04/f61/bto-geb_overview-4.15.19.pdf (2019). Accessed 7 Dec 2019
Nguyen, T.A., Byrne, R.H.: Maximizing the cost-savings for time-of-use and net-metering customers using behind-the-meter energy storage systems. In: 2017 North American Power Symposium (NAPS). Morgantown, WV, USA. https://doi.org/10.1109/NAPS.2017.8107380 (2017)
NREL: PVWatts Calculator. (National Renewable Energy Laboratory) Retrieved 04 10, 2020, from https://pvwatts.nrel.gov/ (2020). Accessed 10 Apr 2020
NREL: REopt Lite—Webtool User Manual. National Renewable Energy Laboratory. Retrieved 06 25, 2020, from https://reopt.nrel.gov/tool/REopt%20Lite%20Web%20Tool%20User%20Manual.pdf (n.d.). Accessed 25 June 2020
NREL: REopt Lite™ API (Version 1). Retrieved from https://developer.nrel.gov/docs/energy-optimization/reopt-v1/ (n.d.). Accessed 15 Apr 2020
Ogunmodede, O., Anderson, K., Cutler, D., Newman, A.: Optimizing design and dispatch of a renewable energy system. Appl. Energy 287, 116527 (2021)
Article
Google Scholar
OpenEI: U.S. Utility Rate Database. Retrieved 04 08, 2020, from https://openei.org/wiki/Utility_Rate_Database (2017). Accessed 8 Apr 2020
Petrovic, N., Strezoski, L., Dumnic, B.: Overview of software tools for integration and active management of high penetration of DERs in emerging distribution networks. In: IEEE EUROCON 2019-18th International Conference on Smart Technologies. Novi Sad, Serbia. (2019). https://doi.org/10.1109/EUROCON.2019.8861765
Rebours, Y.G., Kirschen, D.S., Trotignon, M., Rossignol, S.: A survey of frequency and voltage control ancillary services—Part II: economic features. IEEE Trans. Power Syst. 22(1), 358–366 (2007)
Article
Google Scholar
REopt-Lite-Case-Study-A: Case Study Part I. Retrieved from https://reopt.nrel.gov/tool/results/8ad0650b-99fb-4f51-9ca5-7b57034fd046 (web interface) or https://developer.nrel.gov/api/reopt/v1/job/270848c3-0379-4a53-ab47-c0197b5de077/results?api_key=DEMO_KEY (API) (2020). Accessed 15 Apr 2020
REopt-Lite-Case-Study-B: Case Study Part II. Retrieved from https://reopt.nrel.gov/tool/results/88aa7f10-3a49-4fd1-94e6-01fb3bb66e1e (web interface) or https://developer.nrel.gov/api/reopt/v1/job/f82782e2-0176-44a6-82a4-f3897cd74ffb/results?api_key=DEMO_KEY (API) (2020). Accessed 15 Apr 2020
Ringkjøb, H.-K., Haugan, P.M., Solbrekke, I.M.: A review of modelling tools for energy and electricity systems with large shares of variable renewables. Renew. Sustain. Energy Rev. 96, 440–459 (2018). https://doi.org/10.1016/j.rser.2018.08.002
Article
Google Scholar
Rockx, C., Tate, J.E., Rogers, E.S.: Hybrid planning tool for solar and battery systems in Ontario. In: 2018 IEEE International Conference on Smart Energy Grid Engineering (SEGE). Oshawa, ON, Canada. (2018). https://doi.org/10.1109/SEGE.2018.8499437
Scioletti, M., Newman, A., Goodman, J., Zolan, A., Leyffer, S.: Optimal design and dispatch of a system of diesel generators, photovoltaics and batteries for remote locations. Optim. Eng. 18(3), 755–792 (2017)
MathSciNet
Article
Google Scholar
Stadler, M., Groissbock, M., Cardoso, G., Marnay, C.: Optimizing distributed energy resources and building retrofits with the strategic DER-CAModel. Berkley Lab, Microgrids at Berkley. Retrieved 2020, from https://www.osti.gov/servlets/purl/1163652 (2014). Accessed 15 Apr 2020
Trabish, H.: As 100% renewables goals proliferate, what role for utilities? Utility Dive. Retrieved 12 5, 2019, from https://www.utilitydive.com/news/as-100-renewables-goals-proliferate-what-role-for-utilities/551165/ (2019). Accessed 5 Dec 2019
Tudu, B., Mandal, K.K., Chakraborty, N.: Behind the meter optimization of grid connected PV system. In: 2018 International Conference on Computing, Power and Communication Technologies (GUCON). Greater Noida, Uttar Pradesh, India. (2018). https://doi.org/10.1109/GUCON.2018.8675000
Vatanparvar, K., Sharma, R.: Battery optimal approach to demand charge reduction in behind-the-meter energy management systems. In: 2018 IEEE Power & Energy Society General Meeting (PESGM). Portland, OR, USA. (2018). https://doi.org/10.1109/PESGM.2018.8586597
Vejdan, S., Kline, A., Totri, M., Grijalva, S., Simmons, R.: Behind-the-meter energy storage: economic assessment and system impacts in Georgia. In: 2019 North American Power Symposium (NAPS). Wichita, KS, USA. (2019). https://doi.org/10.1109/NAPS46351.2019.9000287
Wu, D., Kintner-Meyer, M., Yang, T., Balducci, P.: Economic analysis and optimal sizing for behind-the-meter battery storage. In: 2016 IEEE Power and Energy Society General Meeting (PESGM). Boston, MA, USA. (2016). https://doi.org/10.1109/PESGM.2016.7741210