Skip to main content

Advertisement

Log in

Investigating the impact of stochasticity in microgrid energy management

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Various stochastic programming methods have been used to account for penetration of uncertain renewable energy generation in microgrids. However, these stochastic methods may be unnecessary. Energy storage combined with rescheduling based on a rolling time horizon gives a microgrid powerful tools to adapt to any unexpected events. Add to that the natural tendency to over-engineer new systems and one begins to wonder how much value can be gained by stochastic optimization over deterministic methods. We investigated this question by looking at an existing residential microgrid in Hoover, AL. We compare various stochastic approaches for scheduling with deterministic approaches and show that there is little value of using stochastic programming. Instead, we find that considering longer time horizons is a better use of computational resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

\(u_{gt}^s\) :

Commitment status for each generator g in time t, for scenario s, \(\in \{0,1\}\)

\(v_{gt}^s\) :

Generator start up indicator for each generator g in time t, scenario s \(\in \{0,1\}\)

\(u_{bt}^{Cs},u_{bt}^{Ds}\) :

Battery charging/discharging status, respectively in time t, scenario s, \(\in \{0,1\}\)

\(P_{gt}^s\) :

Total power (kW) at each generator g in time t, for scenario s, \(\in \mathbb {R}^+\)

\(P_{bt}^{Cs},P_{bt}^{Ds}\) :

Battery charging/discharging power (kW), respectively, \(\in \mathbb {R}^+\)

\(p_{gt}^{ms}\) :

Power at mth generator interval (kW), \(\in \mathbb {R}^+\)

\(P_{vt}^s\) :

PV power which is not curtailed at time t, scenario s (kW), \(\in \mathbb {R}^+\)

\(E_{bt}^s\) :

Energy in battery b at time t for scenario s (kWh), \(\in \mathbb {R}^+\)

\(E_{bt}^{EX,s}\) :

Amount of battery extreme energy in time t, scenario s (kWh), \(\in \mathbb {R}^+\)

\(P^{Vs}_{bt}\) :

Difference in battery power between time t and \(t-1\), scenario s, \(\in \mathbb {R}\)

\(L_t^s\) :

Load shed at time t scenario s, \(\in \mathbb {R}^+\)

\(k_{g}\) :

minimum up cost of generator g

\(C_{gt}^m\) :

Marginal cost for mth generator interval (strictly increasing)

\(C^{v}_{gt}\) :

Start up cost for generator g

\(C_{bt}\) :

Battery operational cost

\(\eta _b^C\) :

Charging efficiency of battery b

\(\eta _b^D\) :

Discharging efficiency of batter b

\(P_g^{min}\) :

Generator min up power

\(P_{b,INIT}\) :

Initial power output of battery b

\(D_{t}\) :

Real demand at time t

\(P_{vt}^{Fs}\) :

Forecasted PV power at time t for scenario s

\(E_b^{min}\) :

Minimum allowable energy for battery b

\(E_b^{max}\) :

Maximum allowable energy for battery b

\(E^{cap}_b\) :

Maximum energy capacity for battery b

\(E_{b,INIT}\) :

Initial state of charge of batter b

\(TU_g\) :

Minimum up-time for generator g

\(g \in \mathcal {G}\) :

Set of generators

\(b \in \mathcal {B}\) :

Set of batteries

\(v \in \mathcal {V}\) :

Set of PV panels

\(m \in \mathcal {I}\) :

Set of piecewise generator power components

\(t \in \mathcal {T}\) :

Set of timeperiods

\(s \in \mathcal {S}\) :

Set of scenarios

References

  1. Bie, Z., Zhang, P., Li, G., Hua, B., Meehan, M., Wang, X.: Reliability evaluation of active distribution systems including microgrids. IEEE Trans. Power Syst. 27(4), 2342 (2012)

    Article  Google Scholar 

  2. Hatziargyriou, N., Asano, H., Iravani, R., Marnay, C.: Microgrids. IEEE Power Energy Mag 5(4), 78 (2007)

    Article  Google Scholar 

  3. D.E. Olivares, C.A. Ca nizares, M. Kazerani, A centralized energy management system for isolated microgrids, IEEE Trans Smart Grid 5(4), 1864 (2014)

  4. Hatziargyriou, N.: Microgrids: architectures and control. Wiley, Hoboken (2014)

    Google Scholar 

  5. Moretti, L., Astolfi, M., Vergara, C., Macchi, E., Pérez-Arriaga, J.I., Manzolini, G.: A design and dispatch optimization algorithm based on mixed integer linear programming for rural electrification. Appl. Energy 233, 1104 (2019)

    Article  Google Scholar 

  6. Zia, M.F., Elbouchikhi, E., Benbouzid, M.: Microgrids energy management systems: A critical review on methods, solutions, and prospects. Appl. Energy 222, 1033 (2018)

    Article  Google Scholar 

  7. Van Slyke, R.M., Wets, R.: L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17(4), 638 (1969)

    Article  MathSciNet  Google Scholar 

  8. Geoffrion, A.M.: Generalized benders decomposition. J. Optim. Theory Appl. 10(4), 237 (1972)

    Article  MathSciNet  Google Scholar 

  9. Rockafellar, R.T., Wets, R.J.B.: Scenarios and policy aggregation in optimization under uncertainty. Math. Oper. Res. 16(1), 119 (1991)

    Article  MathSciNet  Google Scholar 

  10. CarøE, C.C., Schultz, R.: Dual decomposition in stochastic integer programming. Oper. Res. Lett. 24(1–2), 37 (1999)

    Article  MathSciNet  Google Scholar 

  11. Mulvey, J.M., Ruszczyński, A.: A new scenario decomposition method for large-scale stochastic optimization. Operat. Res. 43(3), 477 (1995)

    Article  MathSciNet  Google Scholar 

  12. Hytowitz, R.B., Hedman, K.W.: Managing solar uncertainty in microgrid systems with stochastic unit commitment. Electr. Power Syst. Res. 119, 111 (2015)

    Article  Google Scholar 

  13. Mohammadi, S., Soleymani, S., Mozafari, B.: Scenario-based stochastic operation management of microgrid including wind, photovoltaic, micro-turbine, fuel cell and energy storage devices. Int. J. Electr. Power Energy Syst. 54, 525 (2014)

    Article  Google Scholar 

  14. Shen, J., Jiang, C., Liu, Y., Wang, X.: A microgrid energy management system and risk management under an electricity market environment. IEEE Access 4, 2349 (2016)

    Article  Google Scholar 

  15. Asensio, M., Contreras, J.: Stochastic unit commitment in isolated systems with renewable penetration under cvar assessment. IEEE Trans. Smart Grid 7(3), 1356 (2015)

    Article  Google Scholar 

  16. Farzin, H., Fotuhi-Firuzabad, M., Moeini-Aghtaie, M.: Stochastic energy management of microgrids during unscheduled islanding period. IEEE Trans. Ind. Inform. 13(3), 1079 (2016)

    Article  Google Scholar 

  17. Mazidi, M., Zakariazadeh, A., Jadid, S., Siano, P.: Integrated scheduling of renewable generation and demand response programs in a microgrid. Energy Convers. Manag. 86, 1118 (2014)

    Article  Google Scholar 

  18. Rezaei, N., Kalantar, M.: Stochastic frequency-security constrained energy and reserve management of an inverter interfaced islanded microgrid considering demand response programs. Int. J. Electr. Power Energy Syst. 69, 273 (2015)

    Article  Google Scholar 

  19. Zakariazadeh, A., Jadid, S., Siano, P.: Smart microgrid energy and reserve scheduling with demand response using stochastic optimization. Int. J. Electr. Power Energy Syst. 63, 523 (2014)

    Article  Google Scholar 

  20. D.E. Olivares, J.D. Lara, C.A. Ca nizares, M. Kazerani, Stochastic-predictive energy management system for isolated microgrids, IEEE Trans. Smart Grid 6(6), 2681 (2015)

  21. Su, W., Wang, J., Roh, J.: Stochastic energy scheduling in microgrids with intermittent renewable energy resources. IEEE Trans. Smart Grid 5(4), 1876 (2013)

    Article  Google Scholar 

  22. Palma-Behnke, R., Benavides, C., Lanas, F., Severino, B., Reyes, L., Llanos, J., Sáez, D.: A microgrid energy management system based on the rolling horizon strategy. IEEE Trans. Smart Grid 4(2), 996 (2013)

    Article  Google Scholar 

  23. Silvente, J., Kopanos, G.M., Dua, V., Papageorgiou, L.G.: A rolling horizon approach for optimal management of microgrids under stochastic uncertainty. Chem. Eng. Res. Des. 131, 293 (2018)

    Article  Google Scholar 

  24. J. Silvente, G.M. Kopanos, E.N. Pistikopoulos, A. Espu na, A rolling horizon optimization framework for the simultaneous energy supply and demand planning in microgrids, Appl. Energy 155, 485 (2015)

  25. McIlvenna, A., Ostrowski, J., Herron, A., King, D., Irminger, P., Hambrick, J., Ollis, B.: Practice summary: Improved reliability via optimization in residential microgrids. INFORMS J. Appl. Anal. 50(2), 112 (2020)

    Article  Google Scholar 

  26. A. McIlvenna, A. Herron, J. Hambrick, B. Ollis, J. Ostrowski, Reducing the computational burden of a microgrid energy management system, Comput. Ind. Eng. 106384 (2020)

  27. Xu, B., Oudalov, A., Ulbig, A., Andersson, G., Kirschen, D.S.: Modeling of lithium-ion battery degradation for cell life assessment. IEEE Trans. Smart Grid 9(2), 1131 (2016)

    Article  Google Scholar 

  28. W.E. Hart, C.D. Laird, J.P. Watson, D.L. Woodruff, G.A. Hackebeil, B.L. Nicholson, J.D. Siirola, Pyomo–optimization modeling in python, vol. 67, 2nd edn. (Springer Science & Business Media, 2017)

  29. Hart, W.E., Watson, J.P., Woodruff, D.L.: Pyomo: modeling and solving mathematical programs in python. Math. Program. Comput. 3(3), 219 (2011)

    Article  MathSciNet  Google Scholar 

  30. Sharma, I., Dong, J., Malikopoulos, A.A., Street, M., Ostrowski, J., Kuruganti, T., Jackson, R.: A modeling framework for optimal energy management of a residential building. Energy Build. 130, 55 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Ostrowski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McIlvenna, A., Ollis, B. & Ostrowski, J. Investigating the impact of stochasticity in microgrid energy management. Energy Syst 13, 493–508 (2022). https://doi.org/10.1007/s12667-021-00437-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-021-00437-9

Keywords

Navigation