Skip to main content

Advertisement

Log in

Experimental evaluation of adaptive maximum power point tracking for a standalone photovoltaic system

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

The adaptability of maximum power point tracking (MPPT) of a solar PV system is important for integration to a microgrid. Depending on what fixed step-size the MPPT controller implements, there is an impact on settling time to reach the maximum power point (MPP) and the steady state operation for conventional tracking techniques. This paper presents experimental results of an adaptive tracking technique based on Perturb and Observe (P&O) and Incremental Conductance (IC) for standalone Photovoltaic (PV) systems under uniform irradiance and partial shading conditions. Analysis and verification of measured and MATLAB/Simulink simulation results have been carried out. The adaptive tracking technique splits the operational region of the solar PV’s power–voltage characteristic curve into four and six operational sectors to understand the MPP response and stability of the technique. By implementing more step-sizes at sector locations based on the distance of the sector from the MPP, the challenges associated with fixed step-size is improved on.The measured and simulation results clearly indicate that the proposed system tracks MPP faster and displays better steady state operation than conventional system. The proposed system’s tracking efficiency is over 10% greater than the conventional system for all techniques. The proposed system has been under partial shading condition has been and it outperforms other techniques with the GMPP achieved in 0.9 s which is better than conventional techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. BP Energy Economics, 2018 BP Energy Outlook 2018 BP Energy Outlook. 2018, BP Energy Outlook p. 125 (2018)

  2. UK Renewable Energy Roadmap. Department of Energy and Climate Change (2011)

  3. Tawil, T.E., Charpentier, J.F., Benbouzid, M.: Sizing and rough optimization of a hybrid renewable-based farm in a stand-alone marine context. Renew. Energy 115, 1134 (2018)

    Article  Google Scholar 

  4. Sheng, L., Zhou, Z., Charpentier, J., Benbouzid, M.: Stand-alone island daily power management using a tidal turbine farm and an ocean compressed air energy storage system. Renew. Energy 103, 286 (2017)

    Article  Google Scholar 

  5. Moluguri, N.Kumar, Murthy, C.Rama, Harshavardhan, V.: Solar energy system and design—review. Mater. Today Proc. 3(10), 3637 (2016)

    Article  Google Scholar 

  6. Kabir, E., Kumar, P., Kumar, S., Adelodun, A.A., Kim, K.H.: Solar energy: potential and future prospects. Renew. Sustain. Energy Rev. 82, 894 (2018)

    Article  Google Scholar 

  7. Solangi, K.H., Islam, M.R., Saidur, R., Rahim, N.A., Fayaz, H.: A review on global solar energy policy. Renew. Sustain. Energy Rev. 15, 2149 (2011)

    Article  Google Scholar 

  8. Huynh, D.C., Dunnigan, M.W.: Development and comparison of an improved incremental conductance algorithm for tracking the MPP of a solar PV panel. IEEE Trans. Sustain. Energy 7(4), 1421 (2016)

    Article  Google Scholar 

  9. Grancini, G.: A new era for solar energy: hybrid perovskite rocks. Photoniques, pp. 24–31 (2019)

  10. Racharla, S., Rajan, K.: Solar tracking system—a review. Int. J. Sustain. Eng. 10(2), 72 (2017)

    Google Scholar 

  11. Eldin, S.S., Abd-Elhady, M., Kandil, H.: Feasibility of solar tracking systems for PV panels in hot and cold regions. Renew. Energy 85, 228 (2016)

    Article  Google Scholar 

  12. Tan, C.W.T.C.W., Green, T., Hernandez-Aramburo, C.: Analysis of perturb and observe maximum power point tracking algorithm for photovoltaic applications. 2008 IEEE 2nd International Power and Energy Conference (PECon 08), 237 (2008)

  13. Ramli, M.A., Twaha, S., Ishaque, K., Al-Turki, Y.A.: A review on maximum power point tracking for photovoltaic systems with and without shading conditions. Renew. Sustain. Energy Rev. 67, 144 (2017)

    Article  Google Scholar 

  14. Ishaque, K., Salam, Z.: A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition. Renew. Sustain. Energy Rev. 19, 475–488 (2013)

  15. Liu, Y.H., Huang, S.C., Huang, J.W., Liang, W.C.: A particle swarm optimization-based maximum power point tracking algorithm for PV systems operating under partially shaded conditions. IEEE Trans. Energy Convers. 27(4), 1027 (2012)

    Article  Google Scholar 

  16. Masoum, M.A.S., Dehbonei, H., Fuchs, E.F.: Theoretical and experimental analyses of photovoltaic systems with voltage- and current-based maximum power-point tracking. IEEE Trans. Energy Convers. 17(May), 514 (2014)

    Google Scholar 

  17. Algarín, C.R., Giraldo, J.T., Álvarez, O.R.: Fuzzy logic based MPPT controller for a PV system. Energies 10(12) (2017)

  18. Penella, M.T., Gasulla, M.: A simple and efficient MPPT method for low-power PV cells. Int. J. Photoenergy 2014(1), 1 (2014)

    Article  Google Scholar 

  19. Islam, H., Mekhilef, S., Shah, N., Soon, T., Seyedmahmousian, M., Horan, B., Stojcevski, A.: Performance evaluation of maximum power point tracking approaches and photovoltaic systems. Energies 11(2), 365 (2018)

    Article  Google Scholar 

  20. Houssamo, I., Locment, F., Sechilariu, M.: Maximum power tracking for photovoltaic power system: development and experimental comparison of two algorithms. Renew. Energy 35(10), 2381 (2010)

    Article  Google Scholar 

  21. Piegari, L., Rizzo, R., Spina, I., Tricoli, P.: Optimized adaptive perturb and observe maximum power point tracking control for photovoltaic generation. Energies 8(5), 3418 (2015)

    Article  Google Scholar 

  22. Jaen, C., Moyano, C., Santacruz, X., Pou, J., Arias, A.: Overview of maximum power point tracking control techniques used in photovoltaic systems. In: Proceedings of the 15th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2008, pp. 1099–1102 (2008)

  23. Putri, R.I., Wibowo, S., Rifa’i, M.: .Maximum power point tracking for photovoltaic using incremental conductance method. Energy Procedia 68, 22–30 (2015)

  24. Visweswara, K.: An investigation of incremental conductance based maximum power point tracking for photovoltaic system. Energy Procedia 54, 11 (2014)

    Article  Google Scholar 

  25. Ghassami, A.Akbar, Sadeghzadeh, S.Mohammad, Soleimani, A.: A high performance maximum power point tracker for PV systems. Electr. Power Energy Syst. 53, 237 (2013)

    Article  Google Scholar 

  26. Ganesh, V., Jadhav, C.B., Choudhari, Y.R., Kate, O.N., Rajguru, V.S.: 2017 7th International Conference on Power Systems (ICPS), pp. 7–12 (2017)

  27. Yüksek, G., Mete, A.N.: A novel variable step size adaptive conductance ratio algorithm for MPPT in solar PV systems. In: 2017 10th International Conference on Electrical and Electronics Engineering (ELECO), pp. 949–953 (2017)

  28. Anya, I.F., Saha, C., Ahmed, H., Huda, N., Sujan, R.: Performance improvement of perturb and observe maximum power point tracking technique for solar PV applications, chap. 8. In: Eltamaly, A.A.Y., Ali, M. (eds.) Modern MPPT Techniques for Photovoltaic Energy Systems, 1st edn. Springer International Publishing, Cham (2019)

  29. Lappalainen, K., Valkealahti, S.: Output power variation of different PV array configurations during irradiance transitions caused by moving clouds. Appl. Energy 190, 902 (2017)

    Article  Google Scholar 

  30. Ramli, M.Z., Salam, Z.: Performance evaluation of dc power optimizer (DCPO) for photovoltaic (PV) system during partial shading. Renew. Energy 139, 1336 (2019)

    Article  Google Scholar 

  31. Alonso, R., Ibá nez, P., Martínez, V., Román, E., Sanz, A.: 13th European Conference on Power Electronics and Applications, 2009. EPE ’09, pp. 1–8 (2009)

  32. Sundareswaran, K., Palani, S., Vigneshkumar, V.: An innovative perturb, observe and check algorithm for partially shaded PV systems. IET Renew. Power Gen. 9(7), 757 (2015)

    Article  Google Scholar 

  33. Lian, K.L., Jhang, J.H., Tian, I.S.: A maximum power point tracking method based on perturb-and-observe combined with particle swarm optimization. IEEE J. Photovolt. 4(2), 626 (2014)

    Article  Google Scholar 

  34. Jiang, L.L., Nayanasiri, D., Maskell, D.L., Vilathgamuwa, D.: A hybrid maximum power point tracking for partially shaded photovoltaic systems in the tropics. Renew. Energy 76, 53 (2015)

    Article  Google Scholar 

  35. Benlahbib, B., Bouarroudj, N., Mekhilef, S., Abdelkrim, T., Lakhdari, A., Bouchafaa, F.: A fuzzy logic controller based on maximum power point tracking algorithm for partially shaded PV array-experimental validation. Elektronika ir Elektrotechnika, pp. 38–44 (2018)

  36. Sundareswaran, K., Vignesh kumar, V., Palani, S.: Application of a combined particle swarm optimization and perturb and observe method for MPPT in PV systems under partial shading conditions. Renew. Energy 75, 308 (2015)

  37. Abdullahi, N., Saha, C., Jinks, R.: Modelling and performance analysis of a silicon PV module. J. Renew. Sustain. Energy 033501, 1 (2017)

    Google Scholar 

  38. Ramyar, A., Iman-Eini, H., Farhangi, S.: Global maximum power point tracking method for photovoltaic arrays under partial shading conditions. IEEE Trans. Ind. Electron. 64(4), 2855 (2017)

    Article  Google Scholar 

  39. Femia, N., Petrone, G., Spagnuolo, G., Vitelli, M.: Power electronics and control techniques for maximum energy harvesting in photovoltaic systems. In: Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems, 1st edn. CRC Press (2013)

  40. Erickson, R.W., Maksimovic, D.: Fundamentals of Power Electronics, 2nd edn. Springer (2001)

  41. Luo, F.L., Ye, H.: Small signal analysis of energy factor and mathematical modeling for power DC–DC converters. IEEE Trans. Power Electron. 22(1), 69 (2007)

    Article  Google Scholar 

  42. Ramani, S., Kollimalla, S.K., Arundhati, B.: Comparative study of P&O and incremental conductance method for PV system. In: 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), pp. 1–7 (2017)

  43. Jha, K., Dahiya, R.: Numerical Optimization in Engineering and Sciences. Advances in Intelligent Systems and Computing. Springer International Publishing, Singapore (2020)

    Google Scholar 

  44. Ahmed, J., Salam, Z.: Comparative study of perturb & observe (P&O) and incremental conductance (IC) MPPT technique of PV system. IEEE Trans. Ind. Inform. 11(6), 1378 (2015)

    Article  Google Scholar 

  45. Alajmi, B.N., Ahmed, K.H., Finney, S.J., Williams, B.W.: A maximum power point tracking technique for partially shaded photovoltaic systems in microgrids. IEEE Trans. Ind. Electron. 60(4), 1596 (2013)

    Article  Google Scholar 

  46. Manickam, C., Raman, G.R., Raman, G.P., Ganesan, S.I., Nagamani, C.: A hybrid algorithm for tracking of GMPP based on P&O and PSO with reduced power oscillation in string inverters. IEEE Trans. Ind. Electron. 63(10), 6097 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihechiluru Anya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anya, I., Saha, C., Ahmed, H. et al. Experimental evaluation of adaptive maximum power point tracking for a standalone photovoltaic system. Energy Syst 13, 835–853 (2022). https://doi.org/10.1007/s12667-021-00436-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-021-00436-w

Keywords

Navigation