Downscaling of future national capacity scenarios of the French electricity system to the regional level


In order to respond to the COP21 targets in terms of carbon mitigation, the participant governments have set pledges and roadmaps for renewable energy penetration in order to decarbonize the different energy sectors (electricity, transport, industry, etc.). This paper raises the question of the regional distribution of the targeted renewable capacities and their precise locations across twelve regions in France. To do so, land and ocean eligibility for renewable penetration is studied taking into account the different environmental, techno-economic, social and political criteria constraining the implementation of renewable generation facilities. Onshore and offshore wind as well as solar photovoltaics (open field) are investigated. The maximum integration capacities are then evaluated for each region in France, and total 306, 33, and 1,626 GW respectively. According to a review of French capacity scenarios from in the literature, these potentials are clearly far beyond the renewable capacities suggested for 2035. Therefore, the eligible spots for renewable integration are subjected to a multi-criteria analysis in order to select the most propitious spots in response to the suggested capacities.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    L’Assemblée nationale and Le Sénat: LOI n° 2015–992 du 17 août 2015 relative à la transition énergétique pour la croissance verte (1), vol. NOR: DEVX1413992L, p. 14263 (2015).

  2. 2.

    Spécial COP 21 - Les engagements nationaux de la France:, Nov. 30 (2015).

  3. 3.

    Commissariat général au développement durable: Chiffres clés du climat : France, Europe et Monde.” Service de la donnée et des études statistiques (SDES) (2018). Available:

  4. 4.

    RTE: Production, Emissions de CO2. Bilan électrique 2017 (2017).

  5. 5.

    Tomorrow: Climate Impact by Area, Ranked by carbon intensity of electricity consumed (gCO2eq/kWh). Electricity Map (2018).

  6. 6.

    International Energy Agency (IEA): Statistics, Emissions Factors (2018).

  7. 7.

    RTE: “Production,” Bilan électrique 2017 (2017).

  8. 8.

    Parc nucléaire français: Connaisance des Energies (2018).

  9. 9.

    RTE: Bilan prévisionnel de l’équilibre offre-demande d’électricité en France, Edition 2017. (2017).

  10. 10.

    Pierre, L.H., Nabil, W.: Hulot recule sur la baisse du nucléaire à 50 % de la production électrique en 2025. Le Monde, Nov. 09 (2017).

  11. 11.

    Ademe: Évolution du marché, caractéristiques environnementales et techniques - Véhicules particuliers neufs vendus en France. (2017).

  12. 12.

    Markus, W., Ilona, W.: Diesel cars can be banned from German cities, court rules. Reuters, Business News, Feb. 27, 2018.

  13. 13.

    ADEME: Vers un mix électrique 100% renouvelable en 2050, Rapport final. (2017).

  14. 14.

    Jerez, S., et al.: The CLIMIX model: a tool to create and evaluate spatially-resolved scenarios of photovoltaic and wind power development. Renew. Sustain. Energy Rev. 42, 1–15 (2015).

    Article  Google Scholar 

  15. 15.

    Martin, R., et al.: Linking the Power and Transport Sectors — Part 2 : Modelling a Sector Coupling Scenario for Germany. Energies10, 957 (2017).

  16. 16.

    ADEME: Contribution de l’ADEME à l’élaboration de visions énergétiques 2030–2050, Synthèse. (2013).

  17. 17.

    ANCRE: Scénarios de l’ANCRE pour la transition énergétique, Rapport 2013. (2013).

  18. 18.

    RTE: Bilan prévisionnel de l’équilibre offre-demande, édition 2014. (2014).

  19. 19.

    Association négaWatt: Scénario négaWatt 2017–2050, Dossier de Synthèse. (2017).

  20. 20.

    ANCRE: Prospective énergétique France 2050 : le scénario de la Loi de Transition Energétique. (2017).

  21. 21.

    ADEME: Un Mix Electrique 100 % Renouvelable ? Analyses Et Optimisations. (2017).

  22. 22.

    ADEME, “Actualisation Du Scénario Énergie-Climat, ADEME 2035–2050.” 2017, [Online]. Available:

  23. 23.

    IDDRI, “La transition du système électrique français à l’horizon 2030.” 2017, [Online]. Available:

  24. 24.

    RTE, “Bilan électrique 2017,” 2017.

  25. 25.

    Ryberg, D. S., Robinius, M., Stolten, D.: Methodological Framework for Determining the Land Eligibility of Renewable Energy Sources. ArXiv Prepr. ArXiv171207840, pp. 1–35, 2017.

  26. 26.

    Ryberg, D. S., Robinius, M., Stolten, D.: Evaluating Land Eligibility Constraints of Renewable Energy Sources in Europe. Energies, 11, no. 5, 2018,

  27. 27.

    Ryberg, D. S., Robinius, M., Stolten, D.: Geospatial Land Availability for Energy Systems (GLAES). (accessed May 14, 2018).

  28. 28.

    GDAL Development Team: GDAL-Geospatial Data Abstraction Library. Open Source Geospatial Foundation, Chicagi, IL, USA (2017)

    Google Scholar 

  29. 29.

    Jones, E., Oliphant, T., Peterson, P.: SciPy: Open Source scientific tolls for Python. Comput Sci Eng 9, 10–20 (2017)

    Google Scholar 

  30. 30.

    Copernicus. European Environmental Agency (EEA), “Corine Land Cover (CLC) 2012, Version 18.5.1 .” 2012.

  31. 31.

    OpenStreetMap Contributors, “OpenStreetMap,” 2017.

  32. 32.

    European Environmental Agency, “Digital Elevation Model over Europe (EU-DEM).” (accessed Apr. 01, 2017).

  33. 33.

    UNEP-WCMC and IUCN. Cambridge, UK., “Protected Planet: The World Database on Protected Areas (WDPA),” 2016. (accessed Apr. 01, 2017).

  34. 34.

    International Union for Conservation of Nature (IUCN), Gland, Switzerland, “Guidelines for Applying Protected Area Management Categories.” Nigel Dudley, 2008, [Online]. Available:

  35. 35.

    Official Journal of the European Union, Directive 2009/147/EC of the European parliement and the Council of 30 November 2009 on the conservation of wild birds (codified version). pp. 7–25.

  36. 36.

    “Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and wild fauna and flora,” Official Journal of the European Union, pp. 7–50, 1992.

  37. 37.

    Mathis, L. M., Bernhard, L., Günther, G., Irena, N., Oliver, S.: Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun.7, 13603 (2016).

  38. 38.

    Technical University of Denmark. DTU, “Global Wind Atlas 1 km Resolution.” (accessed Apr. 01, 2017).

  39. 39.

    The World Bank Group, “Global Solar Atlas,” 2018.,7.514648,4&s=45.213002,2.548828 (accessed Jan. 30, 2018).

  40. 40.

    GEODATA, GISCO, Eurostat, “Transport Networks: Airports 2013.” (accessed Apr. 01, 2017).

  41. 41.

    Eurostat, “Hydrography (LAEA),” GEODATA, GISCO. (accessed Apr. 01, 2017).

  42. 42.

    GEODATA, GISCO, Eurostat, “Clusters: Urban 2011.” :

  43. 43.

    Julien Courtel, Aude Richard, and Juliette Talpin, “Le baromètre 2017 des énergies renouvelables électriques en France.” Observ’ER, 2017, [Online]. Available:

  44. 44.

    Ministère de l’écologie et du développement durable, “Schémas Régionaux Climat Air Energie - SRCAE,” Pôle Territoires et Changement Climatique.

  45. 45.

    RTE, “Panorama de l’électricité renouvelable en 2017.” 2017, [Online]. Available:

  46. 46.

    Préfet de la région Alsace, Région Alsace, “Schéma régional Climat Air Énergie Alsace, Schéma régional éolien.” 2012, [Online]. Available:

  47. 47.

    Préfet de la région Champagne Ardenne, “Plan Climat Air Energie Champagne Ardenne, Schéma Régional Eolien, Annexe.” May 2012, [Online]. Available:

  48. 48.

    Agence Bocage, “Notions générales sur l’éolien, Schéma paysager éolien du département du Nord.” [Online]. Available:

  49. 49.

    Préfet de la région Nord-Pas-de-Calais, “Annexe : ‘Schéma Régional Eolien.’” [Online]. Available:

  50. 50.

    île de France, “Schéma Régional Eolien : île de France, C : Recommandations et potentiel éolien.” 2012, [Online]. Available:

  51. 51.

    Préfet maritime de la Méditerranée, Préfet de la région Provence-Alpes-Côte d’Azur, “Document de planification Le développement de l’éolien en mer Méditerranée.” 2015, [Online]. Available:

  52. 52.

    Ministère de l’Environnement, de l’Energie et de la Mer, “Infrastructures, transports et mer, Note technique du 11 juillet 2016 relative aux mesures de sécurité maritime applicables à la planification d’un champ éolien en mer.” 2016, [Online]. Available:

  53. 53.

    “GADM database of Global Administrative Areas, version 2.0,” Global Administrative Areas, 2012.

  54. 54.

    Benjamin Halpern, Melanie Frazier, John Potapenko, Kenneth Casey, and Kellee Koenig, “Cumulative human impacts: raw stressor data (2008 and 2013),” Knb. Knowledge Network for Biocomplexity, 2015.

  55. 55.

    “EMODnet Human Activities, Cables, Actual Routes,” 2015.

  56. 56.

    “EMODnet Human Activities: Telecom cables (schematic routes),” 2014.

  57. 57.

    “Natural Gas Pipelines in Europe, Asia, Africa & Middle East,” World Map. (accessed Apr. 04, 2017).

  58. 58.

    Messager, M.L., Lehner, B., Grill, G., Nedeva, I., Schmitt, O.: Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016)

    Article  Google Scholar 

  59. 59.

    “The GEBCO_2014 Grid, version 20141103,” General Bathymetric Chart of the Oceans (GEBCO).

  60. 60.

    Eichhorn, M., Masurowski, F., Becker, R., Thrän, D.: Wind energy expansion scenarios – A spatial sustainability assessment. Energy 180, 367–375 (2019).

    Article  Google Scholar 

  61. 61.

    Laurent Fayein, Patrick Albrecht, and Michel Dumont, “Instruction administrative des projets éoliens, Rapport.” CGEDD - Conseil Général de l’Environnement et du développement durable, May 2011, [Online]. Available:

  62. 62.

    Jérôme Christin, “Les énergies renouvelables en zone de montagne : Contraintes et opportunités de développement – Étude sur la partie Sud des Alpes.” Cerema, Direction Territoriale Méditerranée, Oct. 2016, [Online]. Available:

  63. 63.

    Stéphane Mandard, “Les contraintes militaires croissantes menacent la filière éolienne terrestre,” Le Monde, Oct. 13, 2017.

  64. 64.

    “Contraintes militaires et développement éoliens, 14e législature,” Sénat, 2017.

  65. 65.

    Tlili, O., et al.: Role of electricity interconnections and impact of the geographical scale on the French potential of producing hydrogen via surplus electricity by 2035. Energy (2019).

    Article  Google Scholar 

Download references


The present work is carried out in the framework of a PhD thesis funded by Air Liquide. It was the result of collaboration between the Institute of Electrochemical Process Engineering (IEK-3) of the Forschungszentrum Jülich GmbH, and the Institute for techno-economics for energy systems (I-tésé) of the CEA. The work of the IEK-3 was supported by the Helmholtz Association under the Joint Initiative “EnergySystem 2050—A Contribution of the Research Field Energy

Author information



Corresponding author

Correspondence to Olfa Tlili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tlili, O., Mansilla, C., Robinius, M. et al. Downscaling of future national capacity scenarios of the French electricity system to the regional level. Energy Syst (2020).

Download citation


  • Land
  • Ocean
  • Eligibility
  • Renewable
  • France
  • Regional