Modeling and performance study of a parabolic trough solar power plant using molten salt storage tank in Egypt: effects of plant site location

Abstract

Modeling and performance study of large parabolic trough solar power plant using molten slat storage tank is conducted and presented for three different locations in Egypt (Aswan, Al-Arish and Hurghada) using 16 h storage system. The simulation algorithm and solar modeling have been created and simulated by MATLAB/SIMULINK program. A comparison between studied cities is introduced to select the best location for constructing the solar plant based on selection criteria; hot header outlet temperature, volume (hot and cold) variations during charging and discharging, and cycle power efficiency. A full design of the thermal power plant with the storage tanks is also conducted using a molten salt (60% NaNO3 and 40% KNO3). Moreover, hourly electricity plant output to obtain the influence of the thermal storage tank on the plant performance was calculated and presented. The results indicated that Aswan city is the optimum location to construct a 500 MW solar power plant under the Egyptian climate. A comparison for current model validation between simulated results and the actual results of existing plant (Archimede) was fulfilled and good agreement was obtained by maximum error 5%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Abbreviations

DNI:

Direct normal irradiation (W/m2)

z :

Zenith angle (°)

h:

Hour angle (°)

n:

Number of day (–)

IAM:

Incidence angle modifier (angle)

RS:

Row space (m)

W:

Collector aperture width (m)

f :

Focal length of collector (m)

SCA:

Solar collector assemble (–)

Re:

Reynolds number (dimensionless)

NU :

Nusselt number (dimensionless)

ΔP:

Total pressure drop per unit length (Pa/m)

D tank :

Storage tank diameter (m)

q loss :

Heat loss (kj)

SM:

Solar multiple (–)

HCE:

Heat collection element (–)

htank :

Tank height (dimensionless)

T:

Temperature (K)

δ:

Declination angle (°)

θ:

Incident angle (°)

β:

\( = \frac{360}{365}\left( {n - 1} \right) \) (°)

μ:

Dynamic viscosity (N s/m2)

ν:

Kinematic viscosity (m2/s)

ρ:

Density (kg/m3)

CSP:

Concentrated solar power

CSPP:

Concentrated solar power plant

DNI:

Direct normal irradiation

HTF:

Heat transfer fluid

HEX:

Heat exchanger

IAPWS IF-97:

International Association for Properties of Water and Steam Industrial Formation 1997

LCoE:

Levelized cost of energy

TES:

Thermal energy storage

SCA:

Solar collector assemble

SEGS:

Solar energy generation system

SM:

Solar multiple

References

  1. 1.

    Comsan, M.: Solar energy perspectives in Egypt. In: Proceeding of the 4th Environmental Physical Conference, Hurghada, Egypt (2010)

  2. 2.

    Lippke, F.: Simulation of the part-load behavior of a 30 MW SEGS plant. Prepared for Sandia National Laboratories, Albuquerque, NM, SAND95-1293 (1995)

  3. 3.

    KJC Operating Company (Power point Presentation).: Kramer SEGS facility solar electric generating systems III through VII. Last accessed 20 Oct 2004

  4. 4.

    Blair, N., Scott, A., Pitz-Paal, R., Schwarzboezl, P., Cable, R.: Concentrating “TRNSYS modeling of the SEGS VI parabolic trough solar electric generating system”. In: Proceedings of Solar Forum 2001, Washington, D.C. (2001)

  5. 5.

    Stuetzle, A.: Automatic control of the 30 MWe SEGS VI parabolic trough plant. M.Sc, Department of Mechanical Engineering, University of Wisconsin-Madison (2002)

  6. 6.

    Forristall, R.: Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver. National Renewable Energy Laboratory, NREL/TP-550-34169 (2003)

  7. 7.

    Patnode, A.: Simulation and performance evaluation of parabolic trough solar power plant. M.Sc, University of Wisconsin-Madison (2006)

  8. 8.

    Isabel, L., Jose, L., Daniel, B.: Performance model for parabolic trough solar thermal power plants with thermal storage: comparison to operating plant data. Sol. Energy 85, 2443–2460 (2011)

    Article  Google Scholar 

  9. 9.

    Fernandez, G., Zarza, E.: Parabolic-trough sola collectors and their applications. Renew. Sustain. Energy 14, 1695–1721 (2010)

    Article  Google Scholar 

  10. 10.

    Hepbasli, A., Alsuhaibani, Z.: A key review on present status and Future directions of solar energy studies and applications in Saudi Arabia. Renew. Sustain. Energy Rev. 15, 5021–5050 (2011)

    Article  Google Scholar 

  11. 11.

    Zhen, Y., Suresh, V.: Thermal analysis of solar thermal energy storage in a molten-salt themocline. Sol. Energy 48, 974–985 (2010)

    Google Scholar 

  12. 12.

    Bradshaw, R., Siegel, N.: Molten nitrate salt development for thermal energy storage in parabolic trough solar power systems. In: ASME Conference Proceeding, pp. 631–637 (2008)

  13. 13.

    Zhen, Y., Suresh, V.: Cyclic operation of molten-salt thermal energy storage in thermoclines for solar power plants. Appl. Energy 103, 256–265 (2013)

    Article  Google Scholar 

  14. 14.

    Roberta, F., Antonio, C., Domenico, M.: Molten salt mixture properties in RELAP5 code for thermodynamics solar applications. Int. J. Therm. Sci. 47, 1676–1687 (2008)

    Article  Google Scholar 

  15. 15.

    Horst, D.: Performance simulation for parabolic trough solar power plant and export scenario analysis for north Africa. M.Sc, Faculty of Engineering, Cairo University (2012)

  16. 16.

    Mohamed, M.H., William, G.E., Fatouh, M.: Solar energy utilization in water production from humid air. Sol. Energy 148, 98–109 (2017)

    Article  Google Scholar 

  17. 17.

    William, G.E., Mohamed, M.H., Fatouh, M.: Desiccant system for water production from humid air using solar energy. Energy 90, 1707–1720 (2015). https://doi.org/10.1016/j.energy.2015.06.125

    Article  Google Scholar 

  18. 18.

    Shaaban, S., Albatal, A., Mohamed, M.H.: Optimization of H-rotor Darrieus turbines’ mutual interaction in staggered arrangements. Renew. Energy 125, 87–99 (2018)

    Article  Google Scholar 

  19. 19.

    Ramadan, A., Yousef, K., Said, M., Mohamed, M.H.: Shape optimization and experimental validation of a drag vertical axis wind turbine. Energy 151, 839–853 (2018)

    Article  Google Scholar 

  20. 20.

    Maizi, M., Mohamed, M.H., Dizene, R., Mihoubi, M.C.: Noise reduction of a horizontal wind turbine using different blade shapes. Renew. Energy 117, 242–256 (2018)

    Article  Google Scholar 

  21. 21.

    Mohammadi, M., Lakestani, M., Mohamed, M.H.: Intelligent parameter optimization of Savonius rotor using artificial neural network and genetic algorithm. Energy 143, 56–68 (2018)

    Article  Google Scholar 

  22. 22.

    Hashem, I., Mohamed, M.H.: Aerodynamic performance enhancements of H-rotor Darrieus wind turbine. Energy 142, 531–545 (2018)

    Article  Google Scholar 

  23. 23.

    Hashem, I., Mohamed, M.H., Hafiz, A.A.: Aero-acoustics noise assessment for wind-lens turbine. Energy 118, 345–368 (2017)

    Article  Google Scholar 

  24. 24.

    El-Baz, A.R., Youssef, K., Mohamed, M.H.: Performance assessment of an interactive three-rotor Savonius wind turbine. Renew. Energy 86, 89–968 (2016)

    Article  Google Scholar 

  25. 25.

    Halder, P., Mohamed, M.H., Samad, A.: Wave energy conversion: design and shape optimization. Ocean Eng. 150, 337–351 (2018)

    Article  Google Scholar 

  26. 26.

    Hashem, I., Abdel Hameed, H.S., Mohamed, M.H.: An axial turbine in an innovative oscillating water column (OWC) device for sea-wave energy conversion. Ocean Eng. 164, 536–562 (2018)

    Article  Google Scholar 

  27. 27.

    Mohamed, M.H., Janiga, G., Thévenin, D.: Performance optimization of a modified Wells turbine using non-symmetric airfoil blades. ASME Turbo Expo 2008: Power for Land, Sea, and Air, pp. 2481–2488

  28. 28.

    Elattar, H.F., Fouda, A., Nada, S.A., Refaey, H.A., Al-Zahrani, A.: Thermal and hydraulic numerical study for a novel multi tubes in tube helically coiled heat exchangers: effects of operating/geometric parameters. Int. J. Therm. Sci. 128, 70–83 (2018)

    Article  Google Scholar 

  29. 29.

    Elattar, H.F., Specht, E., Fouda, A., Bin-Mahfouz, A.S.: CFD modeling using PDF approach for investigating the flame length in rotary kilns. Heat Mass Transf. 52, 2635–2648 (2016)

    Article  Google Scholar 

  30. 30.

    Elattar, H.F., Fouda, A., Nada, S.A.: Performance investigation of a novel solar hybrid air conditioning and humidification–dehumidification water desalination system. Desalination 382, 28–42 (2016)

    Article  Google Scholar 

  31. 31.

    Elattar, H.F., Specht, E., Fouda, A., Bin-Mahfouz, A.S.: Study of parameters influencing fluid flow and wall hot spots in rotary kilns using CFD. Can. J. Chem. Eng. 94, 355–367 (2016)

    Article  Google Scholar 

  32. 32.

    Nada, S.A., Fouda, A., Elattar, H.F.: Parametric study of flow field and mixing characteristics of outwardly injected jets into a crossflow in a cylindrical chamber. Int. J. Therm. Sci. 102, 185–201 (2016)

    Article  Google Scholar 

  33. 33.

    Elattar, H.F., Fouda, A., BinMahfouz, A.S.: CFD modelling of flow and mixing characteristics for multiple rows jets injected radially into a non-reacting crossflow. J. Mech. Sci. Technol. 30, 185–198 (2016)

    Article  Google Scholar 

  34. 34.

    Jasmina, R., Amelija, D.: Defining of the intensity of solar radiation on horizontal and oblique surface on earth. Work. Living Environ. Prot. 2, 77–86 (2001)

    Google Scholar 

  35. 35.

    Sargent and Lundy.: Assessment of parabolic trough and power tower solar technology costs and performance forecasts. NREL (2003)

  36. 36.

    Fernandez, D., Pitie, F., Caceres, G., Baeyens, J.: Thermal energy storage: how previous findings determine current research priorities. Energy 39, 246–257 (2012)

    Article  Google Scholar 

  37. 37.

    Pranesh, K., Shreya, M., Rangan, B.: An analysis of costs of parabolic trough technology in India. Energy Policy 48, 407–419 (2012)

    Article  Google Scholar 

  38. 38.

    https://www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=19. Last accessed 9 May 2018

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. H. Mohamed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohamed, M.H., El-Sayed, A.Z., Megalla, K.F. et al. Modeling and performance study of a parabolic trough solar power plant using molten salt storage tank in Egypt: effects of plant site location. Energy Syst 10, 1043–1070 (2019). https://doi.org/10.1007/s12667-018-0298-4

Download citation

Keywords

  • Modeling and simulation
  • Solar power plant
  • Parabolic trough
  • Storage tank
  • Molten salt