Hydropower bidding in a multi-market setting


We present a literature survey and research gap analysis of mathematical and statistical methods used in the context of optimizing bids in electricity markets. Particularly, we are interested in methods for hydropower producers that participate in multiple, sequential markets for short-term delivery of physical power. As most of the literature focus on day-ahead bidding and thermal energy producers, there are important research gaps for hydropower, which require specialized methods due to the fact that electricity may be stored as water in reservoirs. Our opinion is that multi-market participation, although reportedly having a limited profit potential, can provide gains in flexibility and system stability for hydro producers. We argue that managing uncertainty is of key importance for making good decision support tools for the multi-market bidding problem. Considering uncertainty calls for some form of stochastic programming, and we define a modelling process that consists of three interconnected tasks; mathematical modelling, electricity price forecasting and scenario generation. We survey research investigating these tasks and point out areas that are not covered by existing literature.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. 1.

    Arguably, the term ‘bidding problem’ could be more properly defined as ‘offer problem’, as the producer needs to decide what volumes to offer to the market; the term bids traditionally being used for buyers, i.e. the demand side. However, the term ‘bidding problem’ is widely incorporated in the literature, at least in the European setting. Some of the references cited use ‘offer problem’.


  1. 1.

    Aasgård, E.K., Andersen, G.S., Fleten, S.-E., Haugstvedt, D.: Evaluating a stochastic-programming-based bidding model for a multireservoir system. IEEE Trans. Power Syst. 29(4), 1748–1757 (2014)

    Article  Google Scholar 

  2. 2.

    Aasgård, E.K., Naversen, C.Ø., Fodstad, M., Skjelbred, H.I.: Optimizing day-ahead bid curves in hydropower production. Energy Systems, pp. 1–19 (2017)

  3. 3.

    Anbazhagan, S., Kumarappan, N.: Day-ahead deregulated electricity market price forecasting using recurrent neural network. IEEE Syst. J. 7(4), 866–872 (2013)

    Article  Google Scholar 

  4. 4.

    Anderson, E.J., Philpott, A.B.: Using supply functions for offering generation into an electricity market. Oper Res 50(3), 477–489 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Andersen, J., Kaut, M., Tomasgard, A.: Stochastic model for short-term balancing of supply and consumption of electricity. In: Modelling and Optimisation of Renewable Energy Systems, pp. 37–66. School of Business and Social Sciences, Aarhus University, Aarhus (2015). ISBN 9788793195189, http://pure.au.dk/portal/en/publications-research/modelling-and-optimisation-of-renewable-energy-systems%2880b927a9-a945-4d22-9e8e-3210714bea9c%29.html

  6. 6.

    Bayraksan, G., Morton, D.P.: Assessing solution quality in stochastic programs. Math Program 108(2–3), 495–514 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Bayraksan, G., Morton, D.P., Partani, A.: Simulation-based optimality tests for stochastic programs. In: Infanger, G. (ed.) Stochastic Programming: The State of the Art In Honor of George B. Dantzig, International Series in Operations Research & Management Science, pp. 37–55. Springer, Berlin (2011). https://doi.org/10.1007/978-1-4419-1642-6

    Google Scholar 

  8. 8.

    Berrada, A., Loudiyi, K., Zorkani, I.: Valuation of energy storage in energy and regulation markets. Energy 115(Part 1), 1109–1118 (2016). https://doi.org/10.1016/j.energy.2016.09.093

    Article  Google Scholar 

  9. 9.

    Boomsma, T.K., Juul, N., Fleten, S.-E.: Bidding in sequential electricity markets: the Nordic case. Eur. J. Oper. Res. 238(3), 797–809 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Brolin, M.O., Söder, L.: Modeling Swedish real-time balancing power prices using nonlinear time series models. In: 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), pp. 358–363. IEEE (2010)

  11. 11.

    Chan, K.F., Gray, P., Van Campen, B.: A new approach to characterizing and forecasting electricity price volatility. Int. J. Forecast. 24(4), 728–743 (2008)

    Article  Google Scholar 

  12. 12.

    Chopra, V., Ziemba, W.: The effects of errors in means, variances, and covariances on optimal portfolio choice. J. Portfolio Manag. 19(2), 6–11 (1993)

    Article  Google Scholar 

  13. 13.

    Conejo, A.J., Contreras, J., Espínola, R., Plazas, M.A.: Forecasting electricity prices for a day-ahead pool-based electric energy market. Int. J. Forecast. 21(3), 435–462 (2005)

    Article  Google Scholar 

  14. 14.

    De Ladurantaye, D., Gendreau, M., Potvin, J.-Y.: Strategic bidding for price-taker hydroelectricity producers. IEEE Trans. Power Syst. 22(4), 2187–2203 (2007). https://doi.org/10.1109/TPWRS.2007.907457

    Article  Google Scholar 

  15. 15.

    De Ladurantaye, D., Gendreau, M., Potvin, J.-Y.: Optimizing profits from hydroelectricity production. Comput. Oper. Res. 36(2), 499–529 (2009). https://doi.org/10.1016/j.cor.2007.10.012

    MATH  Article  Google Scholar 

  16. 16.

    Dupačová, J., Consigli, G., Wallace, S.W.: Scenarios for multistage stochastic programs. Ann. Oper. Res. 100, 25–53 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Faria, E., Fleten, S.-E.: Day-ahead market bidding for a nordic hydropower producer: taking the elbas market into account. Comput. Manag. Sci. 8(1), 75–101 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Fleten, S.-E., Kristoffersen, T.K.: Stochastic programming for optimizing bidding strategies of a nordic hydropower producer. Eur. J. Oper. Res. 181(2), 916–928 (2007). https://doi.org/10.1016/j.ejor.2006.08.023

    MATH  Article  Google Scholar 

  19. 19.

    Fleten, S.-E., Haugstvedt, D., Steinsbø, J.A., Belsnes, M.M., Fleischmann, F.: Bidding hydropower generation: integrating short- and long-term scheduling. In: Proceedings of 17th Power Systems Computations Conference PSCC 2011, pp. 352–358 (2011)

  20. 20.

    Garcia, R.C., Contreras, J., Van Akkeren, M., Garcia, J.B.C.: A garch forecasting model to predict day-ahead electricity prices. IEEE Trans. Power Syst. 20(2), 867–874 (2005)

    Article  Google Scholar 

  21. 21.

    Gjelsvik, A., Mo, B., Haugstad, A.: Long- and medium-term operations planning and stochastic modelling in hydro-dominated power systems based on stochastic dual dynamic programming. In: Pardalos, P.M., Rebennack, S., Pereira, M.V.F., Iliadis, N.A. (eds.) Handbook of Power Systems I, pp. 33–55. Springer, Berlin (2010)

    Google Scholar 

  22. 22.

    Guo, J.-J., Luh, P.B.: Improving market clearing price prediction by using a committee machine of neural networks. IEEE Trans. Power Syst. 19(4), 1867–1876 (2004)

    Article  Google Scholar 

  23. 23.

    Haldrup, N., Nielsen, M.Ø.: A regime switching long memory model for electricity prices. J. Econom. 135(1), 349–376 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Heitsch, H., Römisch, W., Strugarek, C.: Stability of multistage stochastic programs. SIAM J. Optim. 17(2), 511–525 (2006). https://doi.org/10.1137/050632865

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Heitsch, H., Römisch, W.: Scenario tree modelling for multistage stochastic programs. Math. Program. 118(2), 371–406 (2009). https://doi.org/10.1007/s10107-007-0197-2

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Heitsch, H., Römisch, W.: Scenario tree generation for multi-stage stochastic programs. In: Bertocchi, M., Consigli, G., Dempster, M.A.H. (eds.) Stochastic Optimization Methods in Finance and Energy, International Series in Operations Research and Management Science, vol. 163, chapter 14, pp. 313–341. Springer, Berlin (2011). https://doi.org/10.1007/978-1-4419-9586-5_14

    Google Scholar 

  27. 27.

    Høyland, K., Kaut, M., Wallace, S.W.: A heuristic for moment-matching scenario generation. Comput. Optim. Appl. 24(2–3), 169–185 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Jónsson, T., Pinson, P., Nielsen, H.A., Madsen, H., Nielsen, T.S.: Forecasting electricity spot prices accounting for wind power predictions. IEEE Trans. Sustain. Energy 4(1), 210–218 (2013)

    Article  Google Scholar 

  29. 29.

    Kaut, M.: A copula-based heuristic for scenario generation. Comput. Manag. Sci. 11(4), 503–516 (2014). https://doi.org/10.1007/s10287-013-0184-4

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Kaut, M.: Forecast-based scenario-tree generation method. Optimization Online, e-print ID 2017-03-5898 (2017). http://www.optimization-online.org/DB_HTML/2017/03/5898.html

  31. 31.

    Kaut, M., Wallace, S.W.: Evaluation of scenario generation methods for stochastic programming. Pac. J. Optim. 3, 257–271 (2007)

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Kaut, M., Midthun, K.T., Werner, A.S., Tomasgard, A., Hellemo, L., Fodstad, M.: Multi-horizon stochastic programming. Comput. Manag. Sci. 11(1–2), 179–193 (2014). https://doi.org/10.1007/s10287-013-0182-6. Special Issue: Computational Techniques in Management Science

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Kiesel, R., Paraschiv, F.: Econometric analysis of 15-minute intraday electricity prices. Energy Econ. 64, 77–90 (2017)

    Article  Google Scholar 

  34. 34.

    King, A.J., Wallace, S.W.: Modeling with Stochastic Programming. Springer Series in Operations Research and Financial Engineering. Springer, Berlin (2012). https://doi.org/10.1007/978-0-387-87817-1

  35. 35.

    Klæboe, G., Fosso, O.B.: Optimal bidding in sequential physical markets—a literature review and framework discussion. PowerTech (POWERTECH), 2013 IEEE Grenoble, pp. 1–6 (2013)

  36. 36.

    Klæboe, G., Eriksrud, A.L., Fleten, S.-E.: Benchmarking time series based forecasting models for electricity balancing market prices. Energy Syst. 6(1), 43–61 (2015)

    Article  Google Scholar 

  37. 37.

    Kosater, P., Mosler, K.: Can Markov regime-switching models improve power-price forecasts? Evidence from German daily power prices. Appl. Energy 83(9), 943–958 (2006)

    Article  Google Scholar 

  38. 38.

    Kristiansen, T.: Forecasting Nord Pool day-ahead prices with an autoregressive model. Energy Policy 49, 328–332 (2012)

    Article  Google Scholar 

  39. 39.

    Li, G., Shi, J., Qu, X.: Modeling methods for genco bidding strategy optimization in the liberalized electricity spot market—a state-of-the-art review. Energy 36(8), 4686–4700 (2011). https://doi.org/10.1016/j.energy.2011.06.015

    Article  Google Scholar 

  40. 40.

    Lindqvist, J.: Operation of a hydrothermal electric system: a multistage decision processr. AIEE Trans. Power Appar. Syst. 81, 1–7 (1962)

    Article  Google Scholar 

  41. 41.

    Löhndorf, N., Wozabal, D., Minner, S.: Optimizing trading decisions for hydro storage systems using approximate dual dynamic programming. Oper. Res. 61(4), 810–823 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Lu, N., Chow, J.H., Desrochers, A.A.: Pumped-storage hydro-turbine bidding strategies in a competitive electricity market. IEEE Trans. Power Syst. 19(2), 834–841 (2004)

    Article  Google Scholar 

  43. 43.

    Olsson, M.: On optimal hydropower bidding in systems with wind power: modeling the impact of wind power on power markets. PhD thesis, KTH, Stockholm (2009)

  44. 44.

    Olsson, M., Söder, L.: Modeling real-time balancing power market prices using combined SARIMA and Markov processes. IEEE Trans. Power Syst. 23(2), 443–450 (2008)

    Article  Google Scholar 

  45. 45.

    Paraschiv, F., Fleten, S.-E., Schürle, M.: A spot-forward model for electricity prices with regime shifts. Energy Econ. 47, 142–153 (2015). https://doi.org/10.1016/j.eneco.2014.11.003. ISSN 0140-9883

    Article  Google Scholar 

  46. 46.

    Pereira, M.V., Pinto, L.M.: Multi-stage stochastic optimization applied to energy planning. Math. Program. 52(1–3), 359–375 (1991)

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Pflug, G.C.: Version-independence and nested distributions in multistage stochastic optimization. SIAM J. Optim. 20(3), 1406–1420 (2010). https://doi.org/10.1137/080718401. ISSN 1095-7189

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    Pflug, G.C., Pichler, A.: Dynamic generation of scenario trees. Comput. Optim. Appl. 62(3), 641–668 (2015). https://doi.org/10.1007/s10589-015-9758-0. ISSN 1573-2894

    MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    Pflug, G.C., Pichler, A.: From empirical observations to tree models for stochastic optimization: convergence properties. SIAM J. Optim. 26(3), 1715–1740 (2016). https://doi.org/10.1137/15M1043376

    MathSciNet  MATH  Article  Google Scholar 

  50. 50.

    Philpott, A., Guan, Z., Khazaei, J., Zakeri, G.: Production inefficiency of electricity markets with hydro generation. Utilities Policy 18(4), 174–185 (2010). ISSN 0957-1787. https://doi.org/10.1016/j.jup.2010.09.001. URL http://www.sciencedirect.com/science/article/pii/S0957178710000585. Designing Electricity Auctions

  51. 51.

    Pritchard, G., Philpott, A.B., Neame, P.J.: Hydroelectric reservoir optimization in a pool market. Math. Program. 103(3), 445–461 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    Séguin, S., Fleten, S.-E., Côté, P., Pichler, A., Audet, C.: Stochastic short-term hydropower planning with inflow scenario trees. Eur. J. Oper. Res. 259(3), 1156–1168 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  53. 53.

    Stage, S., Larsson, Y.: Incremental cost of water power. Power apparatus and systems, part III. Trans. Am. Inst. Electr. Eng. 80(3), 361–364 (1961)

    Google Scholar 

  54. 54.

    Steeger, G., Barroso, L.A., Rebennack, S.: Optimal bidding strategies for hydro-electric producers: a literature survey. IEEE Trans. Power Syst. 29(4), 1758–1766 (2014)

    Article  Google Scholar 

  55. 55.

    Triki, C., Beraldi, P., Gross, G.: Optimal capacity allocation in multi-auction electricity markets under uncertainty. Comput. Oper. Res. 32(2), 201–217 (2005). https://doi.org/10.1016/S0305-0548(03)00211-9

    MathSciNet  MATH  Article  Google Scholar 

  56. 56.

    Vespucci, M.T., Bertocchi, M., Tomasgard, A., Innorta, M.: Integration of Wind Power Production in a Conventional Power Production System: Stochastic Models and Performance Measures, pp. 129–152. Springer, Berlin (2013). ISBN 978-3-642-41080-2. https://doi.org/10.1007/978-3-642-41080-2_5

  57. 57.

    Wang, P., Zareipour, H., Rosehart, W.D.: Descriptive models for reserve and regulation prices in competitive electricity markets. IEEE Trans. Smart Grid 5(1), 471–479 (2014)

    Article  Google Scholar 

  58. 58.

    Weron, R.: Electricity price forecasting: a review of the state-of-the-art with a look into the future. Int. J. Forecast. 30, 1030–1081 (2014)

    Article  Google Scholar 

  59. 59.

    Wolfgang, O., Haugstad, A., Mo, B., Gjelsvik, A., Wangensteen, I., Doorman, G.: Hydro reservoir handling in Norway before and after deregulation. Energy 34(10), 1642–1651 (2009)

    Article  Google Scholar 

  60. 60.

    Yakowitz, S.: Dynamic programming applications in water resources. Water Resour. Res. 18(4), 673–696 (1982)

    Article  Google Scholar 

Download references


This work was supported by the Research Council of Norway under Project Number 255100/E20 MultiSharm.

Author information



Corresponding author

Correspondence to Ellen Krohn Aasgård.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aasgård, E.K., Fleten, SE., Kaut, M. et al. Hydropower bidding in a multi-market setting. Energy Syst 10, 543–565 (2019). https://doi.org/10.1007/s12667-018-0291-y

Download citation


  • Short-term physical bidding
  • Multi-market
  • Hydropower