Skip to main content
Log in

A UKF-based approach to estimate parameters of a three-phase synchronous generator model

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

This paper proposes an approach based on the Unscented Kalman Filter to estimate the parameters of a three-phase synchronous generator model. The developed approach makes use of the trajectory sensitivity functions to assess the influence of the parameters in the model outputs and to classify the parameters into subgroups. Some of the parameters can only be estimated with the selection of a correct sampling window for the estimation process. This characteristic is taken into account to choose a set of windows for the application of the Unscented Kalman Filter. The covariance matrices of this filter, which are also important for the correct estimation of the parameters, are altered to obtain better results. The assessment of the impact of parameter initial values in the filter is also presented in this work. The signals used in the proposed approach are measured at the terminal bus of the synchronous generator, which eliminates the need of knowing the parameters of the grid. The accuracy of the approach is evaluated by comparing the mean squared error between the measured quantities and the responses of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. EMTP-RV User Manual, Version 3.0. Powersys, Le Puy-Sainte-Réparade, France (2014)

  2. Ackermann, T., Andersson, G., Söder, L.: Distributed generation: a definition. Electr. Power Syst. Res. 57(3), 195–204 (2001). https://doi.org/10.1016/S0378-7796(01)00101-8

    Article  Google Scholar 

  3. Anderson, P.M., Fouad, A.A.: Power System Control and Stability. Wiley-IEEE Press, Piscataway (2002)

    Book  Google Scholar 

  4. Cari, E., Alberto, L., Martins, A., Bretas, N.: A methodology for the estimation of synchronous generator and excitation system parameters. In: Power Tech., pp. 1–6 . IEEE, Russia (2005). https://doi.org/10.1109/PTC.2005.4524677

  5. Cisneros-Gonzalez, M., Hernandez, C., Morales-Caporal, R., Bonilla-Huerta, E., Arjona, M.: Parameter estimation of a synchronous-generator two-axis model based on the standstill chirp test. Energy Convers. IEEE Trans. 28(1), 44–51 (2013). https://doi.org/10.1109/TEC.2012.2236433

  6. Frank, P.M.: Introduction to System Sensitivity Theory. Unicamp, New York (1978)

    MATH  Google Scholar 

  7. Geraldi, E., Fernandes, T., Ramos, R.: Estimation of synchronous generator model parameters operating under unbalanced three-phase conditions. In: Power Energy Society General Meeting, pp. 1–5. IEEE (2015)

  8. Geraldi, E.L., Fernandes, T.C.C., Ramos, R.A.: An approach to estimate parameters of a three-phase synchronous generator model. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). https://doi.org/10.1109/PESGM.2016.7741688

  9. Hiskens, I.: Nonlinear dynamic model evaluation from disturbance measurements. Power Syst. IEEE Trans. 16(4), 702–710 (2001). https://doi.org/10.1109/59.962416

  10. Hiskens, I., Pai, M.A.: Power system applications of trajectory sensitivities. In: Power Engineering Society Winter Meeting, vol. 2, pp. 1200–1205. IEEE (2002). https://doi.org/10.1109/PESW.2002.985199

  11. Julier, S., Uhlmann, J.: Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004). https://doi.org/10.1109/JPROC.2003.823141

  12. Kundur, P., Berube, G.R., Hajagos, L.M., Beaulieu, R.: Practical utility experience with and effective use of power system stabilizers. In: Power Engineering Society General Meeting, vol. 3, pp. 1777–1785. IEEE (2003). https://doi.org/10.1109/PES.2003.1267426

  13. Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Canizares, C., Hatziargyriou, N., Hill, D., Stankovic, A., Taylor, C., Van Cutsem, T., Vittal, V.: Definition and classification of power system stability IEEE/cigre joint task force on stability terms and definitions. Power Syst. IEEE Trans. 19(3), 1387–1401 (2004). https://doi.org/10.1109/TPWRS.2004.825981

  14. Nasr-Azadani, E., Canizares, C., Olivares, D., Bhattacharya, K.: Stability analysis of unbalanced distribution systems with synchronous machine and dfig based distributed generators. Smart Grid IEEE Trans. 5(5), 2326–2338 (2014). https://doi.org/10.1109/TSG.2014.2321709

  15. Pantoja, J.N., Olarte, A., Diaz, H.: Simultaneous estimation of exciter, governor and synchronous generator parameters using phasor measurements. In: Electric Power Quality and Supply Reliability Conference (PQ), pp. 43–49 (2014). https://doi.org/10.1109/PQ.2014.6866781

  16. Reddy, J.B.V., Dash, P.K., Samantaray, R., Moharana, A.K.: Fast tracking of power quality disturbance signals using an optimized unscented filter. IEEE Trans. Instrum. Meas. 58(12), 3943–3952 (2009). https://doi.org/10.1109/TIM.2009.2020835

    Article  Google Scholar 

  17. Salim, R., Ramos, R.: A model-based approach for small-signal stability assessment of unbalanced power systems. Power Syst. IEEE Trans. 27(4), 2006–2014 (2012). https://doi.org/10.1109/TPWRS.2012.2192943

  18. Sarkka, S.: On unscented Kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Trans. Autom. Control 52(9), 1631–1641 (2007). https://doi.org/10.1109/TAC.2007.904453

    Article  MathSciNet  MATH  Google Scholar 

  19. Scardua, L.A., da Cruz, J.J.: Automatic tuning of the unscented Kalman filter and the blind tricyclist problem: An optimization problem. IEEE Control Syst. 36(3), 70–85 (2016). https://doi.org/10.1109/MCS.2016.2535912

    Article  MathSciNet  Google Scholar 

  20. Shi, K.L., Chan, T.F., Wong, Y.K., Ho, S.L.: Speed estimation of an induction motor drive using an optimized extended Kalman filter. IEEE Trans. Ind. Electron. 49(1), 124–133 (2002). https://doi.org/10.1109/41.982256

    Article  Google Scholar 

  21. Tang, L., McCalley, J.: Trajectory sensitivities: Applications in power systems and estimation accuracy refinement. In: Power and Energy Society General Meeting (PES), pp. 1–5. IEEE (2013). https://doi.org/10.1109/PESMG.2013.6672533

  22. Valverde, G., Kyriakides, E., Heydt, G., Terzija, V.: Nonlinear estimation of synchronous machine parameters using operating data. Energy Convers. IEEE Trans. 26(3), 831–839 (2011). https://doi.org/10.1109/TEC.2011.2141136

  23. Wan, E., Van Der Merwe, R.: The unscented Kalman filter for nonlinear estimation. In: Adaptive Systems for Signal Processing, Communications, and Control Symposium. AS-SPCC, pp. 153–158. IEEE (2000). https://doi.org/10.1109/ASSPCC.2000.882463

  24. Wehbe, Y., Fan, L.: Ukf based estimation of synchronous generator electromechanical parameters from phasor measurements. In: 2012 North American Power Symposium (NAPS), pp. 1–6 (2012). https://doi.org/10.1109/NAPS.2012.6336347

  25. Zerdali, E., Barut, M.: The comparisons of optimized extended kalman filters for speed-sensorless control of induction motors. IEEE Trans. Ind. Electron. 64, 4340–4351 (2017). https://doi.org/10.1109/TIE.2017.2674579

Download references

Acknowledgements

The authors would like to thank Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), which supported this work under Grant 2013/01340-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson L. Geraldi Jr..

Appendix

Appendix

The synchronous generator considered in the test sytem has a rated power of 10 MVA, a nominal frequency of 60 Hz, 2 poles, rated voltage of \(20~kV_{LL}\), and \(I_{agline}\) is equal to 500 A. The parameter values of this generator are \(H = 0.71061~s\), \(D = 130~Nms\), \(r_a = 0.002~ pu\), \(L_d = 1.394~pu\), \(L_q = 1.353~ pu\), \(r_F = 0.0067~ pu\), \(L_F = 1.4426~ pu\) and \(M_{df} = 0.9847~ pu\).

The parameters of the automatic voltage regulator of the SG are \(K_a = 20\), \(T_a = 0.001~ s\), \(T_b = 1.0~ s\) and \(T_c = 0.6 ~s\). The value of the setpoint \(V_{REF}\) is \(0.6796\,pu\). The parameters of the speed governor are \(R_{SC} = 20\), \(T_1 = 0.5~ s\), \(T_2 =1.0~ s\), \(T_3 = 1.0~ s\) and \(D_t = 0\). The setpoint REF is equal to 0.14249 pu

The impedances of the three-phase load connected to the buses \({\mathrm {GB}}_{\mathrm {a}}\), \({\mathrm {GB}}_{\mathrm {b}}\) and \({\mathrm {GB}}_{\mathrm {c}}\) are \(Z_{L_a}=Z_{L_b}=Z_{L_c}=38.1 + j9.538~ \varOmega \). The elements of the matrix \(Z_{abc}\) of the distribution line are \(Z_{aa} = Z_{bb} = Z_{cc} = 14.70495 +j7.33127~ \varOmega \) and \(Z_{ab} = Z_{bc} = Z_{ca} = 0\). The voltage phasor of the buses \({\mathrm {IB}}_{\mathrm {a}}\), \({\mathrm {IB}}_{\mathrm {b}}\) and \({\mathrm {IB}}_{\mathrm {c}}\) are \(1.0\angle 0^{\circ }~ pu\), \(1.0\angle -120^{\circ }~ pu\) and \(1.0\angle 120^{\circ }~ pu\), respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geraldi, E.L., Fernandes, T.C.C. & Ramos, R.A. A UKF-based approach to estimate parameters of a three-phase synchronous generator model. Energy Syst 9, 573–603 (2018). https://doi.org/10.1007/s12667-018-0280-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-018-0280-1

Keywords

Navigation