Skip to main content

Robust optimization vs. stochastic programming incorporating risk measures for unit commitment with uncertain variable renewable generation

Abstract

Unit commitment seeks the most cost effective generator commitment schedule for an electric power system to meet net load, defined as the difference between the load and the output of renewable generation, while satisfying the operational constraints on transmission system and generation resources. Stochastic programming and robust optimization are the most widely studied approaches for unit commitment under net load uncertainty. We incorporate risk considerations in these approaches and investigate their comparative performance for a multi-bus power system in terms of economic efficiency as well as the risk associated with the commitment decisions. We explicitly account for risk, via Conditional Value at Risk (CVaR) in the stochastic programming objective function, and by employing a CVaR-based uncertainty set in the robust optimization formulation. The numerical results indicate that the stochastic program with CVaR evaluated in a low-probability tail is able to achieve better cost-risk trade-offs than the robust formulation with less conservative preferences. The CVaR-based uncertainty set with the most conservative parameter settings outperforms an uncertainty set based only on ranges.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. NREL Eastern Wind Dataset. http://www.nrel.gov/electricity/transmission/eastern_wind_methodology.html

  2. Renewable Energy Analysis Laboratory, Department of Electrical Engineering, University of Washington. http://www2.ee.washington.edu/research/real/library.html

  3. van Ackooij, W.: A comparison of four approaches from stochastic programming for large-scale unit-commitment. EURO J. Comput. Optim., 5, 1–29 (2015). https://doi.org/10.1007/s13675-015-0051-x

  4. An, Y., Zeng, B.: Exploring the modeling capacity of two-stage robust optimization: variants of robust unit commitment model. IEEE Trans. Power Syst. 30(1), 109–122 (2015)

    Google Scholar 

  5. Asensio, M., Contreras, J.: Stochastic unit commitment in isolated systems with renewable penetration under CVaR assessment. IEEE Trans. Smart Grid 7(3), 1356–1367 (2016)

    Google Scholar 

  6. Bertsimas, D., Brown, D.B.: Constructing uncertainty sets for robust linear optimization. Oper. Res. 57, 1483–1495 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Bertsimas, D., Litvinov, E., Sun, X.A., Zhao, J., Zheng, T.: Adaptive robust optimization for the security constrained unit commitment problem. IEEE Trans. Power Syst. 28, 52–63 (2013)

    Google Scholar 

  8. Bouffard, F., Galiana, F., Conejo, A.: Market-clearing with stochastic security. Part I: formulation. IEEE Trans. Power Syst. 20(4), 1818–1826 (2005)

    Google Scholar 

  9. Bukhsh, W., Papakonstantinou, A., Pinson, P.: A robust optimisation approach using CVaR for unit commitment in a market with probabilistic offers. http://pierrepinson.com/docs/Bukhshetal2016.pdf

  10. Carrion, M., Arroyo, J.M.: A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Trans. Power Syst. 21, 1371–1378 (2006)

    Google Scholar 

  11. Cheung, K., Gade, D., Silva-Monroy, C., Ryan, S.M., Watson, J.P., Wets, R.J.B., Woodruff, D.L.: Toward scalable stochastic unit commitment. Part 2: solver configuration and performance assessment. Energy Syst. 6(3), 417–438 (2015)

    Google Scholar 

  12. Dai, C., Wu, L., Wu, H.: A multi-band uncertainty set based robust SCUC with spatial and temporal budget constraints. IEEE Trans. Power Syst. 31, 4988–5000 (2016)

  13. Dvorkin, Y., Pandzic, H., Ortega-Vazquez, M.A., Kirschen, D.S.: A hybrid stochastic/interval approach to transmission-constrained unit commitment. IEEE Trans. Power Syst. 30(2), 621–631 (2015)

    Google Scholar 

  14. Feng, Y., Rios, I., Ryan, S.M., Spürkel, K., Watson, J.P., Wets, R.J.B., Woodruff, D.L.: Toward scalable stochastic unit commitment. Part 1: load scenario generation. Energy Syst. 6(3), 309–329 (2015)

    Google Scholar 

  15. Feng, Y., Ryan, S.M.: Solution sensitivity-based scenario reduction for stochastic unit commitment. Comput. Manag. Sci. 13(1), 29–62 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Gourtani, A., Xu, H., Pozo, D., Nguyen, T.D.: Robust unit commitment with \(n-1\) security criteria. Math. Methods Oper. Res. 83(3), 373–408 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Guan, Y., Wang, J.: Uncertainty sets for robust unit commitment. IEEE Trans. Power Syst. 29(3), 1439–1440 (2014)

    MathSciNet  Google Scholar 

  18. Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. 24(2–3), 187–206 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Huang, Y., Zheng, Q.P., Wang, J.: Two-stage stochastic unit commitment model including non-generation resources with Conditional Value-at-Risk constraints. Electr. Power Syst. Res. 116, 427–438 (2014). https://doi.org/10.1016/j.epsr.2014.07.010

    Article  Google Scholar 

  20. Jiang, R., Guan, Y., Watson, J.P.: Risk-averse stochastic unit commitment with incomplete information. IIE Trans. 48(9), 838–854 (2016)

    Google Scholar 

  21. Jiang, R., Wang, J., Guan, Y.: Robust unit commitment with wind power and pumped storage hydro. IEEE Trans. Power Syst. 27(2), 800–810 (2012)

    Google Scholar 

  22. Jiang, R., Zhang, M., Li, G., Guan, Y.: Two-stage network constrained robust unit commitment problem. Eur. J. Oper. Res. 234(3), 751–762 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Kazemzadeh, N.: Risk consideration in electricity generation unit commitment under supply and demand uncertainty. Ph.D. thesis, Iowa State University (2016)

  24. Lagos, G., Espinoza, D., Moreno, E., Amaya, J.: Robust planning for an open-pit mining problem under ore-grade uncertainty. Electron. Notes Discret. Math. 37, 15–20 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Lorca, A., Sun, X.A.: Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind. IEEE Trans. Power Syst. 30(4), 1702–1713 (2015)

    Google Scholar 

  26. Lorca, A., Sun, X.A., Litvinov, E., Zheng, T.: Multistage adaptive robust optimization for the unit commitment problem. Oper. Res. 64(1), 32–51 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Martinez, G., Anderson, L.: Toward a scalable chance-constrained formulation for unit commitment to manage high penetration of variable generation. In: 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 723–730. IEEE (2014)

  28. Martinez, G., Anderson, L.: A risk-averse optimization model for unit commitment problems. In: 2015 48th Hawaii International Conference, pp. 2577–2585. IEEE Computer Society (2015)

  29. Murillo-Sanchez, C.E., Zimmerman, R.D., Anderson, C.L., Thomas, R.J.: A stochastic, contingency-based security-constrained optimal power flow for the procurement of energy and distributed reserve. Decis. Support Syst. 56, 1–10 (2013)

    Google Scholar 

  30. Naoum-Sawaya, J., Elhedhli, S.: An interior-point benders based branch-and-cut algorithm for mixed integer programs. Ann. Oper. Res. 210(1), 33–55 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Ozturk, U., Mazumdar, M., Norman, B.: A solution to the stochastic unit commitment problem using chance constrained programming. IEEE Trans. Power Syst. 19(3), 1589–1598 (2004)

    Google Scholar 

  32. Pandzic, H., Dvorkin, Y., Qiu, T., Wang, Y., Kirschen, D.S.: Toward cost-efficient and reliable unit commitment under uncertainty. IEEE Trans. Power Syst. 31(2), 970–982 (2016)

    Google Scholar 

  33. Peralta, J., Perez-Ruiz, J., de la Torre, S.: Unit commitment with load uncertainty by joint chance-constrained programming. In: PowerTech (POWERTECH), 2013 IEEE Grenoble, pp. 1–6 (2013). https://doi.org/10.1109/PTC.2013.6652433

  34. Rockafellar, R.T., Uryasev, S.: Conditional Value-at-Risk for general loss distributions. J. Bank. Financ. 26, 1443–1471 (2002)

    Google Scholar 

  35. Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–41 (2006)

    Google Scholar 

  36. Ruiz, P., Philbrick, C., Zak, E., Cheung, K., Sauer, P.: Uncertainty management in the unit commitment problem. IEEE Trans. Power Syst. 24(2), 642–651 (2009)

    Google Scholar 

  37. Sun, X., Fang, C.: Interval mixed-integer programming for daily unit commitment and dispatch incorporating wind power. In: 2010 International Conference on Power System Technology (POWERCON), pp. 1–6 (2010)

  38. Tahanan, M., van Ackooij, W., Frangioni, A., Lacalandra, F.: Large-scale unit commitment under uncertainty. 4OR 13(2), 115–171 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Takriti, S., Birge, J., Long, E.: A stochastic model for the unit commitment problem. IEEE Trans. Power Syst. 11(3), 1497–1508 (1996)

    Google Scholar 

  40. Wang, J., Botterud, A., Bessa, R., Keko, H., Carvalho, L., Issicaba, D., Sumaili, J., Miranda, V.: Wind power forecasting uncertainty and unit commitment. Appl. Energy 88(11), 4014–4023 (2011)

    Google Scholar 

  41. Wang, J., Shahidehpour, M., Li, Z.: Security-constrained unit commitment with volatile wind power generation. IEEE Trans. Power Syst. 23(3), 1319–1327 (2008)

    Google Scholar 

  42. Wang, Q., Guan, Y., Wang, J.: A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output. IEEE Trans. Power Syst. 27(1), 206–215 (2012)

    MathSciNet  Google Scholar 

  43. Wang, Y., Xia, Q., Kang, C.: Unit commitment with volatile node injections by using interval optimization. IEEE Trans. Power Syst. 26(3), 1705–1713 (2011)

    Google Scholar 

  44. Wong, P., Albrecht, P., Allan, R., Billinton, R., Chen, Q., Fong, C., Haddad, S., Li, W., Mukerji, R., Patton, D., Schneider, A., Shahidehpour, M., Singh, C.: The IEEE reliability test system-1996. IEEE Trans. Power Syst. 14(3), 1010–1020 (1999)

    Google Scholar 

  45. Wood, A., Wollenberg, B.: Power Generation, Operation, and Control. Wiley, New York (1996)

    Google Scholar 

  46. Wu, L., Shahidehpour, M., Li, Z.: Comparison of scenario-based and interval optimization approaches to stochastic SCUC. IEEE Trans. Power Syst. 27(2), 913–921 (2012)

    Google Scholar 

  47. Xiong, P., Jirutitijaroen, P., Singh, C.: A distributionally robust optimization model for unit commitment considering uncertain wind power generation. IEEE Trans. Power Syst. 32(1), 39–49 (2017)

    Google Scholar 

  48. Zhao, C., Guan, Y.: Unified stochastic and robust unit commitment. IEEE Trans. Power Syst. 28, 3353–3361 (2013)

    Google Scholar 

  49. Zhao, C., Guan, Y.: Data-driven stochastic unit commitment for integrating wind generation. IEEE Trans. Power Syst. 31(4), 2587–2596 (2016)

    Google Scholar 

  50. Zheng, Q.P., Wang, J., Liu, A.L.: Stochastic optimization for unit commitment—a review. IEEE Trans. Power Syst. 30(4), 1913–1924 (2015)

    Google Scholar 

  51. Zugno, M., Morales, J.M., Madsen, H.: Commitment and dispatch of heat and power units via affinely adjustable robust optimization. Comput. Oper. Res. 75, 191–201 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Funding was provided by Iowa Energy Center (Grant no. OG-14-014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narges Kazemzadeh.

Appendix A: Solution algorithm

Appendix A: Solution algorithm

We write \(y_1\) for the UC variables that are independent of uncertainty; i.e., the unit commitment, start-up and shut-down cost variables. Also, we write \(y_2\) for the dispatch variables (recall that the dispatch variables may depend on the values of uncertain parameters, e.g. power output, phase angle, production cost). The uncertain parameters (in our problem, the hourly net load) can vary on a set denoted as \({\mathcal {U}}\). Suppose that the RUC is summarized as

$$\begin{aligned} \min \limits _{y_1,y_2} \quad&\left( c^Ty_1+ \max \limits _{u \in {\mathcal {U}}} \ b^Ty_2(u) \right)&\end{aligned}$$
(26a)
$$\begin{aligned} s.t. \quad&\mathbf{F}y_1 \le \mathbf{f},&\end{aligned}$$
(26b)
$$\begin{aligned}&\mathbf{H}y_2(u) \le \mathbf{h},&u \in {\mathcal {U}} \end{aligned}$$
(26c)
$$\begin{aligned}&\mathbf{A}y_1 + \mathbf{B}y_2(u) \le \mathbf{g},&u \in {\mathcal {U}} \end{aligned}$$
(26d)
$$\begin{aligned}&\mathbf{E}y_2(u) = u,&u \in {\mathcal {U}} \end{aligned}$$
(26e)
$$\begin{aligned}&y_1 \in \mathbb {R}^{n_1}\times \{0,1\}^{p_1}, \end{aligned}$$
(26f)
$$\begin{aligned}&y_2(u) \in \mathbb {R}^{n_2},&u \in {\mathcal {U}}. \end{aligned}$$
(26g)

In Problem (26), the objective function (26a) minimizes a combination of unit commitment costs, such as start-up and shut-down costs, and the worst case of the dispatch costs, such as production and shortage costs. Constraint (26b) only defines feasibility of the unit commitment variables. Constraint (26c) involves both the unit commitment decisions and dispatch variables, such as ramp-up and ramp-down constraints. In constraint  (26d), we only constraint dispatch variables, such as power balance equations. Note that dispatch variables depend on the uncertain parameter u. Finally, we have restrictions on decision variables: unit commitment variables are mixed-integer where \(n_1\) is the number of continuous variables and \(p_1\) is the number of binary decisions, and dispatch variables are \(n_2\) continuous variables.

We can associate these constraints to those of our formulation in Sect. 2: Constraint (26b) contains constraints (123)–(8), Constraint (26c) contains (10), (11), (19), Constraint (26d) contains (14)–(18), Constraint (26e) contains (12), (13), Constraint (26f) contains (9), and Constraint (26g) contains (20)–(22).

In this formulation, the second term of the objective function represents the worst case of the dispatch cost. By including this second term, we ensure that the unit commitment problem remains feasible, thus robust, under any realization of uncertainty.

Note that the dispatch constraints depend on both the unit commitment variable \(y_1\) and the uncertain parameter u. Hence, we write \({\varOmega }(y_1,u)\) as a feasible set defined by the dispatch constraints. We let

$$\begin{aligned} {\varOmega }(y_1,u) = \{y_2: (\hbox {26c}), (\hbox {26d}), (\hbox {26e}) \text { and } (\hbox {26g}) \text { are satisfied for fixed } y_1 \text { and } u \}. \end{aligned}$$

Problem (26) can be equivalently reformulated as

$$\begin{aligned} \begin{array}{rl} \min \limits _{y_1} \quad &{} c^Ty_1+ \max \limits _{u \in {\mathcal {U}}} \min \limits _{y_2 \in {\varOmega }(y_1,u)} b^Ty_2 \\ s.t. &{} \text {Constraints } (\hbox {26b}), (\hbox {26f}). \end{array} \end{aligned}$$
(27)

One may observe that \(\min _{y_2 \in {\varOmega }(y_1,u)} b^Ty_2\) is actually the dispatch problem for a fixed unit commitment decision \(y_1\) and uncertain parameter u. Now, by maximizing the optimal cost of the dispatch problem over all possible \(u \in {\mathcal {U}}\), the worst case dispatch decision is obtained.

To solve Problem (27), we reformulate it as follows:

$$\begin{aligned} \begin{array}{rll} \min \limits _{y_1,\gamma } \quad &{} c^Ty_1+ \gamma &{} \\ s.t.\quad &{} (\hbox {26b}), (\hbox {26f}) &{} \\ &{} \gamma \ge S(y_1,u), &{}\quad \forall u \in {\mathcal {U}}, \end{array} \end{aligned}$$
(28)

where

$$\begin{aligned} S(y_1,u) = \min \limits _{y_2 \in {\varOmega }(y_1,u)} b^Ty_2. \end{aligned}$$
(29)

We write \(R(y_1)\) as the worst case of the dispatch problem:

$$\begin{aligned} R(y_1) = \max \limits _{u \in {\mathcal {U}}} S(y_1,u). \end{aligned}$$
(30)

Note that in our problem formulation, since \(R(y_1)\) represents the worst case dispatch cost, we write \(\gamma \ge 0\) without loss of optimality. This problem can be then reformulated as

$$\begin{aligned} \begin{array}{rll} \min \limits _{y_1,\gamma } \quad &{} c^Ty_1+ \gamma &{} \\ s.t.\quad &{} (\hbox {26b}), (\hbox {26f}) &{}\\ &{} \gamma \ge R(y_1), &{} \\ &{} \gamma \ge 0. &{} \end{array} \end{aligned}$$
(31)

Problem (31) is solved using a Benders decomposition approach applying a branch and cut approach. For more details on how to solve subproblem (30) and master problem (31), we refer to [23].

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kazemzadeh, N., Ryan, S.M. & Hamzeei, M. Robust optimization vs. stochastic programming incorporating risk measures for unit commitment with uncertain variable renewable generation. Energy Syst 10, 517–541 (2019). https://doi.org/10.1007/s12667-017-0265-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-017-0265-5

Keywords

  • Unit commitment
  • Renewable energy
  • Stochastic programming
  • Robust optimization
  • CVaR