Model predictive fuzzy control for enhancing FRT capability of DFIG-based WT in real-time simulation environment

Abstract

Fault ride through (FRT) capability creates a challenging condition for wind turbines (WTs) with a doubly fed induction generator (DFIG). In order to fulfill the FRT requirement for WTs with DFIG, the over-current in rotor circuit and theDC-link over-voltage during fault conditions must be addressed. This paper proposes an application of the model predictive control (MPC) system to power converters and uses Takagi–Sugeno–Kang type fuzzy logic control for improving the FRT capability of WTs with DFIG. The effectiveness of the proposed MPC method is compared with conventional proportional-plus-integral controllers with pulse-width modulation. The real-time simulation results illustrate the improved performance offered by the proposed control scheme for maintaining the rotor current and the DC-link voltage within permissible ranges when power grid faults occur.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Saravanakumar, R., Jena, D.: Validation of an integral sliding mode control for optimal control of a three bladed variable speed variable pitch wind turbine. Int. J. Electron. Power Energy Syst. 69(4), 421–429 (2015)

    Article  Google Scholar 

  2. 2.

    Saravanakumar, R., Jena, D.: Nonlinear control of wind turbine with optimal power capture and load mitigation. Energy Syst. 7(3), 429–448 (2016)

    Article  Google Scholar 

  3. 3.

    Asgari, S., Yazdizadeh, A.: Robust model-based fault diagnosis of mechanical drive train in V47/660 kW wind turbine. Energy Syst. (2017). doi:10.1007/s12667-017-0231-2

  4. 4.

    Thomas, A.: Wind Power in Power Systems. Wiley, New York (2005)

    Google Scholar 

  5. 5.

    Ghoudelbourk, S., Dib, D., Omeiri, A.: Decoupled control of active and reactive power of a wind turbine based on DFIG and matrix converter. Energy Syst. 7(3), 483–497 (2016)

    Article  Google Scholar 

  6. 6.

    Semen, S., Niiranen, J., Kanerva, S., Arkkio, A., Saitz, J.: Performance study of a doubly fed wind-power induction generator under network disturbance. IEEE Trans. Energy Convers. 21(4), 883–890 (2006)

    Article  Google Scholar 

  7. 7.

    Pannell, G., Atkinson, D.J., Zahawi, B.: Minimum-threshold crowbar for a fault-ride-through grid-code-compliant DFIG wind turbine. IEEE Trans. Energy Convers. 25(3), 750–759 (2010)

    Article  Google Scholar 

  8. 8.

    Vidal, J., Abad, G., Arza, J., Aurtenechea, S.: Single-phase DC crowbar topologies for low voltage ride through fulfillment of high-power doubly fed induction generator-based wind turbines. IEEE Trans. Energy Convers. 28(3), 768–781 (2013)

    Article  Google Scholar 

  9. 9.

    Tsili, M., Papathanassiou, S.: A review of grid code technical requirements for wind farms. IET Renew. Power Gener. 3(3), 308–332 (2009)

    Article  Google Scholar 

  10. 10.

    Qiao, W., Venayagamoorthy, G.K., Harley, R.G.: Real-time implementation of a STATCOM on a wind farm equipped with doubly fed induction generators. IEEE Trans. Ind. Appl. 45(1), 98–107 (2009)

    Article  Google Scholar 

  11. 11.

    Rahim, A.H.M.A., Nowicki, E.P.: Supercapacitor energy system for fault-ride through of a DFIG wind generation system. Energy Convers. Manag. 52, 96–102 (2012)

    Article  Google Scholar 

  12. 12.

    Zhang, S., Tseng, K.J., Choi, S.S., Nguyen, T.D., Yao, D.L.: Advanced control of series voltage compensation to enhance wind turbine ride through. IEEE Trans. Power Electron. 27(2), 763–772 (2012)

    Article  Google Scholar 

  13. 13.

    Huchel, L., El Moursi, M.S., Zeineldin, H.H.: A parallel capacitor control strategy for enhanced FRT capability of DFIG. IEEE Trans. Sustain. Energy 6(2), 303–312 (2015)

    Article  Google Scholar 

  14. 14.

    Guo, W., et al.: Overview and development progress of a 1-MVA/1-MJ superconducting fault current limiter-magnetic energy storage system. IEEE Trans. Appl. Superconduct. 26(3), 1–5 (2016)

    Article  Google Scholar 

  15. 15.

    Chen, L., et al.: Coordinated control of SFCL and SMES for transient performance improvement of microgrid with multiple DG units. Can. J. Electr. Comput. Eng. 39(2), 158–167 (2016)

    Article  Google Scholar 

  16. 16.

    Karaipoom, T., Ngamroo, I.: Optimal superconducting coil integrated into DFIG wind turbine for fault ride through capability enhancement and output power fluctuation suppression. IEEE Trans. Sustain. Energy 6(1), 28–42 (2015)

    Article  Google Scholar 

  17. 17.

    Huang, P.H., Mouri, M.S.E., Hasen, S.A.: Novel fault ride through scheme and control strategy for doubly fed induction generator-based wind turbine. IEEE Trans. Energy Convers. 30(2), 635–645 (2015)

    Article  Google Scholar 

  18. 18.

    da Costa, J.P., Pinheiro, H., Degner, T., Arnold, G.: Robust controller for DFIGs of grid-connected wind turbines. IEEE Trans. Ind. Electron. 58(9), 4023–4038 (2011)

    Article  Google Scholar 

  19. 19.

    Hossain, M.J., Saha, T.K., Mithulannanthan, N., Pota, H.R.: Control strategies for augmenting LVRT capability of DFIGs in interconnected power system. IEEE Trans. Ind. Electron. 60(6), 2510–2522 (2013)

    Article  Google Scholar 

  20. 20.

    Xiao, S., Yang, G., Zhou, H.L., Geng, H.: An LVRT control strategy based on flux linkage tracking for DFIG-based WECS. IEEE Trans. Ind. Electron. 60(7), 2820–2832 (2013)

    Article  Google Scholar 

  21. 21.

    Xie, D., Xu, Z., Yang, L., Stergaard, J., Xue, Y., Wong, K.P.: A comprehensive LVRT control strategy for DFIG wind turbines with enhanced reactive power support. IEEE Trans. Power Syst. 28(3), 3302–3310 (2013)

    Article  Google Scholar 

  22. 22.

    Rahimi, M., Parniani, M.: Transient performance improvement of wind turbines with doubly fed induction generators using nonlinear control strategy. IEEE Trans. Energy Convers. 25(2), 514–525 (2010)

    Article  Google Scholar 

  23. 23.

    Liang, J., Qiao, W., Harley, R.G.: Feed-forward transient current control for low-voltage ride-through enhancement of DFIG wind turbines. IEEE Trans. Energy Convers. 25(3), 836–843 (2010)

    Article  Google Scholar 

  24. 24.

    Liang, J., Howard, D.F., Restrepo, J.A., Harley, R.G.: Feed-forward transient compensation control for DFIG wind turbines during both balanced and unbalanced grid disturbances. IEEE Trans. Ind. Appl. 49(3), 1452–1463 (2013)

    Article  Google Scholar 

  25. 25.

    Mokryani, G., Siano, P., Piccolo, A., Chen, Z.: Improving fault ride-through capability of variable speed wind turbines in distribution networks. IEEE Syst. J. 7(4), 713–722 (2013)

    Article  Google Scholar 

  26. 26.

    Vrionis, T.D., Koutiva, X.I., Vovos, N.A.: A genetic algorithm-based low voltage ride-through control strategy for grid connected doubly fed induction wind generators. IEEE Trans. Power Syst. 29(3), 1325–1334 (2014)

    Article  Google Scholar 

  27. 27.

    Morshed, M.J., Fekih, A.: Integral terminal sliding mode control to provide fault ride-through capability for a grid connected wind turbine driven DFIG. Proc. IEEE Int. Conf. Ind. Technol. 2015, 1059–1064 (2015)

    Google Scholar 

  28. 28.

    Rahimi, M., Parniani, M.: Coordinated control approaches for low-voltage ride-through enhancement in wind turbines with doubly fed induction generators. IEEE Trans. Energy Convers. 25(3), 873–883 (2010)

    Article  Google Scholar 

  29. 29.

    Kouro, S., Cortes, P., Vargas, R., Ammann, U., Rodriguez, J.: Model predictive control—a simple and powerful method to control power converters. IEEE Trans. Ind. Electron. 56(6), 1826–1838 (2009)

    Article  Google Scholar 

  30. 30.

    Rodriguez, J., Cortes, P.: Predictive Control of Power Converters and Electrical Drives. Wiley, New York (2012)

    Google Scholar 

  31. 31.

    Singh, B., Kyriakides, E., Singh, S.N.: Intelligent control of grid connected unified doubly-fed induction generator. IEEE Power Energy Soc. Gen. Meet. 2010, 1–7 (2010)

    Google Scholar 

  32. 32.

    Yang, L., Xu, Z., Ostergaard, J., Dong, Z.Y., Wong, K.P.: Advanced control strategy of DFIG wind turbines for power system fault ride through. IEEE Trans. Power Syst. 27(2), 713–722 (2012)

    Article  Google Scholar 

  33. 33.

    MathWorks, Simulink Real-Time; Getting Started Guide. The Math-Works, Inc (2014)

  34. 34.

    Kasem, A.H., EI-Saadany, E.F., EI-Tamaly, H.H., Wahab, M.A.A.: An improved fault ride-through strategy for doubly fed induction generator-based wind turbines. IET Renew. Power Gener. 2(4), 201–214 (2008)

    Article  Google Scholar 

  35. 35.

    Patel, C.K., Lee, H.T., KrooI, M.: XXIX OSTIV Congress. Extracting energy from atmospheric turbulence. Lüsse, Berlin (2008)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seyed Abbas Taher.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taher, S.A., Arani, Z.D., Rahimi, M. et al. Model predictive fuzzy control for enhancing FRT capability of DFIG-based WT in real-time simulation environment. Energy Syst 9, 899–919 (2018). https://doi.org/10.1007/s12667-017-0252-x

Download citation

Keywords

  • Doubly-fed induction generator
  • Fuzzy logic control
  • Fault ride through
  • Model predictive control
  • Wind turbine