The impact of policy measures on future power generation portfolio and infrastructure: a combined electricity and CCTS investment and dispatch model (ELCO)


This paper presents a general electricity-CO\(_{2}\) modeling framework that is able to simulate interactions of the energy-only market with different forms of national policy measures. We set up a two sector model where players can invest into various types of generation technologies including renewables, nuclear power and carbon capture, transport, and storage (CCTS). For a detailed representation of CCTS we also include industry players (iron and steel as well as cement), and CO\(_{2}\) transport and CO\(_{2}\) storage including the option for CO\(_{2}\) enhanced oil recovery (CO\(_{2}\)-EOR). The players maximize their expected profits based on variable, fixed and investment costs as well as endogenous prices of electricity, CO\(_{2}\) abatement cost and other incentives, subject to technical and environmental constraints. Demand is inelastic and represented via type hours. The model framework allows for regional disaggregation and features simplified electricity and CO\(_{2}\) pipeline networks. It is balanced via a market clearing for the electricity as well as CO\(_{2}\) market. The equilibrium solution is subject to constraints on CO\(_{2}\) emissions and renewable generation share. We apply the model to a case study of the UK electricity market reform to illustrate the mechanisms and potential results attained from the model.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    RES and nuclear provide sufficient decarbonization alternatives for the electricity sector. The high cost increase, however, is caused by only limited alternative decarbonization technologies in the industry sector. Negative emissions of large-scale utilization of CCTS with biomass, in addition, compensate for unabatable emissions in other sectors [18].

  2. 2.

    The specifics of a possible CM in the UK are not clear yet and were therefore not included in this case study.

  3. 3.

    This is influenced through the diffusion constraint which limits the maximal annual construction, esp. in early periods.


  1. 1.

    World Summit of the Regions.: The Paris Declaration—Opportunity for Bottom-Up Action in Favour of the Low Carbon Economy. Regions of Climate Action, Paris, France (2014)

  2. 2.

    Leader of the G7.: Leaders’ Declaration G7 Summit, 7– 8 June 2015. Schloss Elmau, Germany, Jun. (2015)

  3. 3.

    Hu, J., Crijns-Graus, W., Lam, L., Gilbert, A.: Ex-ante evaluation of EU ETS during 2013–2030: EU-internal abatement. Energy Policy 77, 152–163 (2015)

    Article  Google Scholar 

  4. 4.

    EC.: Questions and answers on the proposed market stability reserve for the EU emissions trading system. European Commission, Brussels, Belgium, Jan. (2014)

  5. 5.

    Pfenninger, S., Hawkes, A., Keirstead, J.: Energy systems modeling for twenty-first century energy challenges. Renew. Sustain. Energy Rev. 33, 74–86 (2014)

    Article  Google Scholar 

  6. 6.

    Capros, P., et al.: The PRIMES Energy System Model-reference Manual. Natl. Tech. Univ, Athens (1998)

    Google Scholar 

  7. 7.

    Fishbone, L.G., Abilock, H.: Markal, a linear-programming model for energy systems analysis: technical description of the bnl version. Int. J. Energy Res. 5(4), 353–375 (1981)

    Article  Google Scholar 

  8. 8.

    Finon, D.: Scope and limitations of formalized optimization of a national energy system—the EFOM model. Energy Models Eur. Community Energy Policy Spec. Publ. IPC Sci. Technol. Press Ltd. Comm. Eur. Community Bruss. Belg. (1979)

  9. 9.

    Criqui, P.: International markets and energy prices: the POLES model. In: Lesourd, J.-B., Percebois, J., Valette, F. (Eds.) Models for Energy Policy. Routledge, New York (1996)

  10. 10.

    Fais, B., Blesl, M., Fahl, U., Voß, A.: Comparing different support schemes for renewable electricity in the scope of an energy systems analysis. Appl. Energy 131, 479–489 (2014)

    Article  Google Scholar 

  11. 11.

    Ehrenmann, A., Smeers, Y.: Generation capacity expansion in a risky environment: a stochastic equilibrium analysis. Oper. Res. 59(6), 1332–1346 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Allevi, E., Bonenti, F., Oggioni, G.: Compelementarity Models for Restructured Electricity Markets under Environmental Regulation, Italy, special issue, p 7–27 (2013)

  13. 13.

    Gürkan, G., Langestraat, R.: Modeling and analysis of renewable energy obligations and technology bandings in the UK electricity market. Energy Policy 70, 85–95 (2014)

    Article  Google Scholar 

  14. 14.

    Chen, Y., Wang, L.: Renewable portfolio standards in the presence of green consumers and emissions trading. Netw. Spat. Econ. 13(2), 149–181 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Kunz, F., Zerrahn, A.: Benefits of coordinating congestion management in electricity transmission networks: theory and application to Germany. Util. Policy 35, 34–45 (2015)

    Article  Google Scholar 

  16. 16.

    EC.: EU Energy, Transport and GHG Emissions Trends to 2050: Reference Scenario 2013. European Commission, Brussels (2013)

  17. 17.

    IPCC.: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva (2014)

  18. 18.

    Kemper, J.: Biomass and carbon dioxide capture and storage: a review. Int. J. Greenh. Gas Control 40, 401–430 (2015)

    Article  Google Scholar 

  19. 19.

    Groenenberg, H., de Coninck, H.: Effective EU and member state policies for stimulating CCS. Int. J. Greenh. Gas Control 2(4), 653–664 (2008)

    Article  Google Scholar 

  20. 20.

    von Hirschhausen, C., Herold, J., Oei, P.-Y.: How a ‘low carbon’ innovation can fail—tales from a ‘lost decade’ for carbon capture, transport, and sequestration (CCTS). Econ. Energy Environ Policy 2, 115–123 (2012)

    Google Scholar 

  21. 21.

    Milligan, B.: Planning for offshore CO\(_{2}\) storage: law and policy in the United Kingdom. Mar. Policy 48, 162–171 (2014)

  22. 22.

    von Stechow, C., Watson, J., Praetorius, B.: Policy incentives for carbon capture and storage technologies in Europe: a qualitative multi-criteria analysis. Glob. Environ. Change 21(2), 346–357 (2011)

    Article  Google Scholar 

  23. 23.

    Gale, J., Abanades, J. C., Bachu, S., Jenkins, C.: Special issue commemorating the 10th year anniversary of the publication of the intergovernmental panel on climate change special report on co2 capture and storage. Int. J. Greenh. Gas Control 40, 1–5 (2015)

  24. 24.

    IPCC.: IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2005)

  25. 25.

    Eide, J., de Sisternes, F.J., Herzog, H.J., Webster, M.D.: CO\(_2\) emission standards and investment in carbon capture. Energy Econ. 45, 53–65 (2014)

    Article  Google Scholar 

  26. 26.

    Middleton, R.S., Eccles, J.K.: The complex future of CO\(_2\) capture and storage: Variable electricity generation and fossil fuel power. Appl. Energy 108, 66–73 (2013)

    Article  Google Scholar 

  27. 27.

    Oei, P.-Y., Herold, J., Mendelevitch, R.: Modeling a carbon capture, transport, and storage infrastructure for europe. Environ. Model. Assess. 19, 515–531 (2014)

    Article  Google Scholar 

  28. 28.

    Morbee, J., Serpa, J., Tzimas, E.: Optimised deployment of a European CO\(_2\) transport network. Int. J. Greenh. Gas Control 7, 48–61 (2012)

    Article  Google Scholar 

  29. 29.

    Middleton, R.S., Bielicki, J.M.: A scalable infrastructure model for carbon capture and storage: SimCCS. Energy Policy 37(3), 1052–1060 (2009)

    Article  Google Scholar 

  30. 30.

    Kazmierczak, T., Brandsma, R., Neele, F., Hendriks, C.: Algorithm to create a CCS low-cost pipeline network. Energy Procedia 1(1), 1617–1623 (2008)

    Article  Google Scholar 

  31. 31.

    Kobos, P.H., Malczynski, L. A., Borns, D. J., McPherson, B. J.: The ‘String of Pearls’: The Integrated Assessment Cost and Source-Sink Model. In: Pittsburgh, PA, USA, Conference Proceedings of the 6th Annual Carbon Capture & Sequestration Conference, May (2007)

  32. 32.

    Gough, C., OxKeefe, L., Mander, S.: Public perceptions of CO\(_2\) transportation in pipelines. Energy Policy 70, 106–114 (2014)

    Article  Google Scholar 

  33. 33.

    Knoope, M.M.J., Ramírez, A., Faaij, A.P.C.: The influence of uncertainty in the development of a CO\(_2\) infrastructure network. Appl. Energy 158, 332–347 (2015)

    Article  Google Scholar 

  34. 34.

    Mendelevitch, R.: The role of CO\(_2\)-EOR for the development of a CCTS infrastructure in the North Sea Region: a techno-economic model and applications. Int. J. Greenh. Gas Control 20, 132–159 (2014)

    Article  Google Scholar 

  35. 35.

    Kemp, A.G., Kasim, S.: The economics of CO2-EOR cluster developments in the UK Central North Sea. Energy Policy 62, 1344–1355 (2013)

    Article  Google Scholar 

  36. 36.

    Fleten, S.-E., Lien, K., Ljønes, K., Pagès-Bernaus, A., Aaberg, M.: Value chains for carbon storage and enhanced oil recovery: optimal investment under uncertainty. Energy Syst. 1(4), 457–470 (2010)

    Article  Google Scholar 

  37. 37.

    Kjärstad, J., Morbee, J., Odenberger, M., Johnsson, F., Tzimas, E.: Modelling large-scale CCS development in Europe linking techno-economic modelling to transport infrastructure. Energy Procedia 37, 2941–2948 (2013)

    Article  Google Scholar 

  38. 38.

    Pollitt, M.G., Haney, A.B.: Dismantling a competitive electricity sector: the U.K’.s electricity market reform. Electr. J. 26(10), 8–15 (2013)

    Google Scholar 

  39. 39.

    DECC.: Digest of United Kingdom Energy Statistics 2014. Department of Energy & Climate Change (DECC), London (2014)

  40. 40.

    The Parliament of Great Britain.: Energy Bill (2013)

  41. 41.

    DECC.: UK Energy in Brief 2014. Department of Energy & Climate Change (DECC), A National Statistics Publication, London (2014)

  42. 42.

    Chawla, M., Pollitt, M.: Global trends in electricity transmission system operation: where does the future lie? Electr. J. 26(5), 65–71 (2013)

    Google Scholar 

  43. 43.

    Johnson, N., Krey, V., McCollum, D., Rao, S., Riahi, K., Rogelj, J.: Stranded on a low-carbon planet: implications of climate policy for the phase-out of coal-based power plants. Technol. Forecast. Soc. Change 90(Part A), 89–102 (2015)

  44. 44.

    Chalmers, H., et al.: Analysing uncertainties for CCS: from historical analogues to future deployment pathways in the UK. Energy Procedia 37, 7668–7679 (2013)

    Article  Google Scholar 

  45. 45.

    Černoch, F., Zapletalová, V.: Hinkley point C: a new chance for nuclear power plant construction in central Europe? Energy Policy 83, 165–168 (2015)

    Article  Google Scholar 

  46. 46.

    Ares, E.: Carbon Price Floor. House of Commons Library, London (2014)

    Google Scholar 

  47. 47.

    Osborne, G.: Chancellor George Osborne’s Budget 2014 speech, 19th March 2014. London (2014)

  48. 48.

    DECC.: Electricity Generation Costs. Department of Energy & Climate Change (DECC), London (2013)

  49. 49.

    Schröder, A., Kunz, F., Meiß, J., Mendelevitch, R., von Hirschhausen, C.: Current and Prospective Costs of Electricity Generation until 2050, vol 68. DIW Data Documentation, Berlin (2013)

  50. 50.

    Element Energy, P.S.C.E, Imperial College, and University of Sheffield.: Demonstrating CO2 Capture in the UK Cement, Chemicals, Iron and Steel and Oil Refining Sectors by 2025: A Techno-Economic Study. Final Report for DECC and BIS, Cambridge (2014)

  51. 51.

    Houses of Parliament.: Low Carbon Technologies for Energy-Intensive Industries, vol. 403. Parliamentary Office of Science & Technology, London (2012)

  52. 52.

    DECC.: Investing in renewable technologies—CfD contract terms and strike prices. Department of Energy & Climate Change (DECC), London (2013)

  53. 53.

    National Grid.: UK Future Energy Scenarios. National Grid. Warwick, United Kingdom (2016)

  54. 54.

    International Energy Agency, Ed.: World Energy Outlook 2015. OECD, Paris (2015)

  55. 55.

    Oei, P.-Y., Mendelevitch, R.: European scenarios of CO\(_2\) infrastructure investment until 2050. Energy. J. 37(3), 171–194 (2016)

    Google Scholar 

Download references


The first draft of the model was developed during a research stay at the International Institute for Applied System Analysis (IIASA) in Laxenburg, Austria. We want to thank all members of the Energy department and in particular Nils Johnson for numerous fruitful discussions and helpful inputs during these months. Additional thanks goes to our colleagues at DIW Berlin and TU Berlin Claudia Kemfert, Christian von Hirschhausen, Franziska Holz, Daniel Huppmann, and Alexander Zerrahn for their discussions, critiques, and comments. The usual disclaimer applies.

Author information



Corresponding author

Correspondence to Roman Mendelevitch.

Appendix: Karush–Kuhn–Tucker conditions of the ELCO model

Appendix: Karush–Kuhn–Tucker conditions of the ELCO model

The electricity sector

$$\begin{aligned}&\begin{array}{l} \frac{\partial L^{T,N}}{\partial g_{h,n,t,a} }: \\ {\begin{array}{lll} {0\le \left( {\begin{array}{l} DF_a \cdot PD_a \cdot TD_h \cdot \left( {\begin{array}{l} -mu\_e_{h,n,a} \\ +EF\_EL_t \cdot \left( {1-CR\_G_t } \right) \cdot \left( {CPS_a +EUA_a } \right) \\ +VC\_G_{n,t,a} +INTC\_G_t \cdot g_{h,n,t,a} \\ -\lambda _a^{target\_CO2} \cdot \alpha _{t,a} \\ \end{array}} \right) \\ +TD_h \cdot \lambda _{n,t,a}^{emps} \cdot EF\_EL_t \cdot \left( {1-CR\_G_t } \right) +\lambda _{h,n,t,a}^{cap\_g} +\lambda _{h,a}^{curt\_el} \\ \end{array}} \right) } \\ \end{array} } \\ \end{array}\nonumber \\&\qquad \bot \, {g_{h,n,t,a} \ge 0}. \end{aligned}$$
$$\begin{aligned} \begin{array}{lll} &{}&{}\frac{\partial L^{T,N}}{\partial g\_\hbox {cfd}_{h,n,t,aa,a} }: \\ &{}0\le &{} DF_a \cdot PD_a \cdot TD_h \cdot \left( {\begin{array}{lll} -SP_{t,aa} -\sum \limits _{aaa\in I\_USE_{t,aa,aaa} } {\alpha _{t,aaa} \cdot \lambda _{aaa}^{target\_co2} } \\ -\sum \limits _{\begin{array}{lll} aaa\in I\_USE\_EL_{t,aa,aaa} , \\ t\in T\_RES \\ \end{array}}\\ {\left[ {\left( {1-TARGET\_RE_{aaa} } \right) \cdot \lambda _{aaa}^{target\_RE} } \right] } \\ +\sum \limits _{\begin{array}{c} aaa\in I\_USE\_EL_{t,aa,aaa} , \\ t\notin T\_RES \end{array}}\\ {\left[ {TARGET\_RE_{aaa} \cdot \lambda _{aaa}^{target\_RE} } \right] } \\ +EF\_EL_t \cdot \left( {1-CR\_G_t } \right) \cdot \left( {CPS_a +EUA_a } \right) \\ +EF\_EL_t \cdot CR\_G_t \cdot mu\_co2_{h,n,a} \\ +VC\_G_{n,t,a} +INTC\_G_t \cdot g\_cfd_{h,n,t,aa,a} \\ \end{array}} \right) \\ &{}&{}+\,TD_h \cdot \sum \limits _{tt\in ONEFUEL_{tt,t} } {\lambda _{n,tt,a}^{emps} } \cdot EF\_EL_t \cdot \left( {1-CR\_G_t } \right) +\lambda _{h,n,t,aa,a}^{cap\_g\_cfd} +\lambda _{h,a}^{curt\_el} \\ &{}&{}+\,TD_h \cdot \lambda _{t,a}^{diff\_g} -TD_h \cdot DIFF\_G_t \cdot \left( {\lambda _{t,a+1}^{diff\_g} +\lambda _{t,a+2}^{diff\_g} } \right) \\ &{}&{} \quad \bot \hbox { }g\_cfd_{h,n,t,aa,a} \ge 0. \\ \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{l} {\begin{array}{ll} {\begin{array}{l} \frac{\partial L^{T,N}}{\partial inv\_g_{n,t,a} }: \\ 0\le \left[ {\begin{array}{l} \sum \limits _{aa\in I\_USE\_EL_{t,a,aa} } {PD_{aa} \cdot DF_{aa} \cdot \left( {FC\_G_{n,t,aa} +INVC\_G_{n,t,aa} } \right) } \\ -\sum \limits _h {TD_h \cdot AVAIL_{h,n,t} } \cdot EMPS_a \cdot \sum \limits _{\begin{array}{l} aa\in I\_USE\_EL_{t,a,aa} \\ tt\in ONEFUEL_{tt,t} \\ \end{array}} {\lambda _{n,tt,aa}^{emps} } \\ -\sum \limits _h {\sum \limits _{aa\in I\_USE\_EL_{t,a,aa} } {\left( {\textit{AVAIL}_{h,n,t} \cdot \lambda _{h,n,t,aa}^{cap\_g} } \right) } } \\ -\sum \limits _h {\sum \limits _{aa\in USE\_EL_{t,a,aa} } {\left( {\textit{AVAIL}_{h,n,t} \cdot \lambda _{h,n,t,a,aa}^{cap\_g\_cfd} } \right) } } \\ +\sum \limits _{aa\in I\_USE\_EL_{t,a,aa} } {\lambda _{n,t,aa}^{pot\_g} } \\ \end{array}} \right] \\ \end{array}}\\ \quad \bot \hbox { }inv\_g_{h,n,t,a} \ge 0 \\ \end{array} } \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{l} \frac{\partial L^{T,N}}{\partial \lambda _{n,t,a}^{emps} }: \\ 0\le \left( {\begin{array}{l} \sum \limits _h {TD_h \cdot AVAIL_{h,n,t} \cdot } \sum \limits _{\begin{array}{l} aa\in USE\_EL_{t,a,aa} , \\ (t,tt)\in ONE\_FUEL_{t,tt} \\ \end{array}} {inv\_g_{n,tt,aa} } \cdot EMPS_{aa} \\ -\sum \limits _h {TD_h \cdot \left[ {\begin{array}{l} \left[ {g_{h,n,t,a} \cdot \left( {EF\_EL_t \cdot \left( {1-CR\_G_t } \right) } \right) } \right] \\ +\sum \limits _{\begin{array}{l} aa\in USE\_EL_{t,a,aa} , \\ \left( {t,tt} \right) \in ONE\_FUEL_{t,tt} \\ \end{array}} \left[ g\_cfd_{h,n,tt,aa,a}\right. \\ \left. \cdot \left( {EF\_EL_{tt} \cdot \left( {1-CR\_G_{tt} } \right) } \right) \right] \\ \end{array}} \right] } \\ \end{array}} \right) \\ \qquad \bot \hbox { }\lambda _{n,t,a}^{emps} \ge 0 \\ \end{array} \end{aligned}$$
$$\begin{aligned}&\tfrac{\partial L^{T,N}}{\partial \lambda _{h,n,t,a}^{cap\_g} }:\nonumber \\&0\le AVAIL_{h,n,t} \cdot \left( {INICAP\_G_{n,t,a} +\sum \limits _{aa\in USE\_EL_{t,a,aa} } {inv\_g_{n,t,aa} } } \right) \nonumber \\&\qquad -g_{h,n,t,a} \hbox { }\bot \hbox { }\lambda _{h,n,t,a}^{cap\_g} \ge 0 \end{aligned}$$
$$\begin{aligned} \begin{array}{l} \frac{\partial L^{T,N}}{\partial \lambda _{h,n,t,aa,a}^{cap\_g\_cfd} }: \\ 0\le AVAIL_{h,n,t} \cdot inv\_g_{n,t,aa} -g\_cfd_{h,n,t,aa,a} \hbox { }\bot \hbox { }\lambda _{h,n,t,aa,a}^{cap\_g\_cfd} \ge 0 \\ \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{l} \frac{\partial L^{T,N}}{\partial \lambda _{n,t,a}^{pot\_g} }: \\ 0\le MAX\_INV_{n,t} -\sum \limits _{aa\in USE\_EL_{t,a,aa} } {inv\_g_{n,t,aa} } \hbox { }\bot \hbox { }\lambda _{n,t,a}^{pot\_g} \ge 0 \\ \end{array} \end{aligned}$$
$$\begin{aligned}&\tfrac{\partial L^{T,N}}{\partial \lambda _{t,a}^{diff\_g} }: \nonumber \\&0\le \left( START\_G_t \cdot \frac{\sum \limits _{h,n} {AVAIL_{h,n,t} \cdot TD_h } }{\# of\hbox { }nodes}\right. \nonumber \\&\qquad +\left. \left[ {\sum \limits _{h,n,aa} {TD_h \cdot \left( {g\_cfd_{h,n,t,aa,a-1} +g\_cfd_{h,n,t,aa,a-2} } \right) } } \right] \right) \cdot DIFF\_G_t\nonumber \\&\qquad -\sum \limits _{h,n,aa} {TD_h \cdot g\_cfd_{h,n,t,aa,a} } \hbox { }\bot \hbox { }\lambda _{t,a}^{diff\_g} \ge 0 \end{aligned}$$

Shared environmental constraints for the electricity sector

$$\begin{aligned} 0\le & {} PD_a \cdot \sum _{h,n,t} {TD_h \cdot \left[ {\left( {g_{h,n,t,a} +\sum _{aa\in USE\_EL_{t,a,aa} } {g\_cfd_{h,n,t,aa,a} } } \right) \cdot \alpha _{t,a} } \right] } \nonumber \\&\bot \hbox { }\lambda _a^{target\_co2} \ge 0. \end{aligned}$$
$$\begin{aligned} 0\le & {} PD_a \cdot \sum \limits _{h,n} {TD_h \cdot } \left[ {\begin{array}{l} \sum \limits _{\begin{array}{c} aa\in USE\_EL_{t,a,aa} , \\ t\in T\_RES \end{array}} {g\_cfd_{h,n,t,aa,a} } +RES\_OLD_{h,n,a} \\ -RE\_TARGET_a \cdot \sum \limits _{h,n} {d_{h,n,a} } \\ \end{array}} \right] \nonumber \\&\bot \hbox { }\lambda _a^{target\_RE} \ge 0. \end{aligned}$$

The electricity transportation utility

$$\begin{aligned}&\tfrac{\partial L^{TSO\_E}}{\partial el\_t}: \nonumber \\&0\le DF_a \cdot PD_a \cdot TD_h \cdot \left( {mu\_el_{h,n,a} -mu\_el_{h,nn,a} +VC\_EL\_T_{n,nn} } \right) \nonumber \\&\qquad +\,\lambda _{h,n,nn,a}^{cap\_el} \hbox { }\bot \hbox { }el\_t_{h,n,nn,a} \ge 0 \end{aligned}$$
$$\begin{aligned}&\tfrac{\partial L^{TSO\_E}}{\partial inv\_el\_t}: \nonumber \\&0\le \sum \limits _{aa>a} {PD_{aa} \cdot \left( {DF_{aa} \cdot INVC\_EL\_T_{n,nn} } \right) } -ADJ\_EL_{n,nn} \nonumber \\&\qquad \cdot \sum \limits _h {\sum \limits _{aa>a} {\left( {\lambda _{h,n,nn,aa}^{cap\_el\_t} +\lambda _{h,nn,n,aa}^{cap\_el\_t} } \right) } } \hbox { }\bot \hbox { }inv\_el\_t_{h,n,nn,a} \ge 0 \end{aligned}$$
$$\begin{aligned}&\tfrac{\partial L^{TSO\_E}}{\partial \lambda _{h,n,nn,a}^{cap\_el\_t} }: \nonumber \\&0\le INICAP\_EL\_T_{n,nn} +\sum \limits _{aa<a} \left( ADJ\_EL_{n,nn} \cdot inv\_el\_t_{n,nn,aa} \right. \nonumber \\&\qquad +\left. ADJ\_EL_{nn,n} \cdot inv\_el\_t_{nn,n,aa} \right) -el\_t_{h,n,nn,a} \nonumber \\&\qquad \bot \hbox { }\lambda _{h,n,nn,a}^{cap\_el\_t} \ge 0 \end{aligned}$$

The industry sector

$$\begin{aligned}&\tfrac{\partial L^{I,N}}{\partial co2\_c_{h,n,i,a} }: \nonumber \\&0\le DF_a \cdot PD_a \cdot TD_h \cdot \left( {-EUA_a +mu\_co2_{h,n,a} +VC\_CO2_{n,i,a} } \right) \nonumber \\&\qquad +\,\lambda _{h,n,i,a}^{max\_ind} +{\lambda _{h,n,i,a}^{cap\_co2\_c}}\hbox { }^{\bot \hbox { }co2\_c_{h,n,i,a} \ge 0} \end{aligned}$$
$$\begin{aligned} {\begin{array}{ll} {\begin{array}{l} \frac{\partial L^{I,N}}{\partial inv\_co2\_c_{n,i,a} }: \\ 0\le \left[ {\begin{array}{l} \sum \limits _{aa\in I\_USE\_CO2_{i,a,aa} } PD_{aa} \cdot DF_{aa}\\ \cdot \left( {FC\_CO2_{n,i,aa} +INVC\_CO2_{n,i,aa} } \right) \\ -\sum \limits _h {\sum \limits _{aa\in I\_USE\_CO2_{i,a,aa} } {\lambda _{h,n,i,aa}^{cap\_co2\_c} \cdot CR\_IND_i } } \\ +\,\lambda _{i,a}^{diff\_co2\_c} -\sum \limits _{aa>a} {\left( {\lambda _{i,aa}^{diff\_co2\_c} \cdot DIFF\_CO2_i } \right) } \\ \end{array}} \right] \\ \end{array}}&{} {\bot \hbox { }inv\_co2\_c_{n,i,a} \ge 0} \\ \end{array} } \end{aligned}$$
$$\begin{aligned} \begin{array}{l} \tfrac{\partial L^{I,N}}{\partial \lambda _{h,n,i,a}^{max\_ind} }: \\ 0\le CO2\_IND_{h,n,i,a} \cdot CR\_IND_i -co2\_c_{h,n,i,a} \hbox { }\bot \hbox { }\lambda _{h,n,i,a}^{max\_ind} \ge 0 \\ \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{l} \frac{\partial L^{I,N}}{\partial \lambda _{h,n,i,a}^{cap\_co2\_c} }: \\ \sum \limits _{aa\in USE\_CO2_{i,a,aa} } {inv\_co2\_c_{n,i,aa} } \cdot CR\_IND_i -co2\_c_{h,n,i,a} \hbox { }\bot \hbox { }\lambda _{h,n,i,a}^{cap\_co2\_c} \ge 0 \\ \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{l} \frac{\partial L^{I,N}}{\partial \lambda _{i,a}^{diff\_co2\_c} }: \\ 0\le \left( {START\_CO2_i +\sum \limits _n {\sum \limits _{aa<a} {inv\_co2\_c_{n,i,aa} } } } \right) \cdot DIFF\_CO2_i\\ \qquad -\sum \limits _n {inv\_co2\_c_{n,i,a} } \hbox { }\bot \hbox { }\lambda _{i,a}^{diff\_co2\_c} \ge 0 \\ \end{array} \end{aligned}$$

The CO\(_{2}\) transportation utility

$$\begin{aligned} \begin{array}{l} \frac{\partial L^{TSO\_CO2}}{\partial co2\_t_{h,n,nn,a} }: \\ 0\le DF_a \cdot PD_a \cdot TD_h \cdot \left( {mu\_co2_{h,nn,a} -mu\_co2_{h,n,a} +VC\_CO2\_t_{n,nn} } \right) \\ \qquad +\,\lambda _{h,n,nn,a}^{cap\_co2\_t} \hbox { }\bot \hbox { }co2\_t_{h,n,nn,a} \ge 0 \\ \end{array} \end{aligned}$$
$$\begin{aligned}&\tfrac{\partial L^{TSO\_E}}{\partial inv\_co2\_t}: \nonumber \\&0\le \sum \limits _{aa>a} {PD_{aa} \cdot \left( {DF_{aa} \cdot INVC\_CO2\_T_{n,nn} } \right) }\nonumber \\&\qquad -ADJ\_CO2_{n,nn} \cdot \sum \limits _h {\sum \limits _{aa>a} {\left( {\lambda _{h,n,nn,aa}^{cap\_co2\_t} +\lambda _{h,nn,n,aa}^{cap\_co2\_t} } \right) } }\nonumber \\&\qquad \bot \hbox { }inv\_co2\_t_{h,n,nn,a} \ge 0 \end{aligned}$$
$$\begin{aligned}&\tfrac{\partial L^{TSO\_E}}{\partial \lambda _{h,n,nn,a}^{cap\_co2\_t} }: \nonumber \\&0\le INICAP\_CO2\_T_{n,nn} +\sum \limits _{aa<a} \left( ADJ\_CO2_{n,nn} \cdot inv\_co2\_t_{n,nn,aa}\right. \nonumber \\&\qquad \left. +ADJ\_CO2_{nn,n} \cdot inv\_co2\_t_{nn,n,aa} \right) -co2\_t_{h,n,nn,a} \hbox { }\bot \hbox { }\lambda _{h,n,nn,a}^{cap\_co2\_t} \ge 0\nonumber \\ \end{aligned}$$

The CO\(_{2}\) storage sector

$$\begin{aligned} {\begin{array}{ll} {\begin{array}{l} \frac{\partial L^{S,N}}{\partial co2\_s_{h,n,s,a} }: \\ 0\le \left[ {\begin{array}{l} DF_a \cdot PD_a \cdot TD_h \cdot \left( {\begin{array}{l} -EFF\_CO2\cdot OILPRICE_a \\ -mu\_co2_{h,n,a} +VC\_CO2_{n,s,a} \\ +INTC\_S_t \cdot co2\_s_{h,n,s,a} \\ \end{array}} \right) \\ +\sum \limits _{hh} {TD_{hh} } \cdot \left( {\sum \limits _{aa\ge a} {PD_{aa} \cdot \lambda _{n,s,aa}^{max\_stor} } } \right) +\lambda _{h,n,s,a}^{cap\_co2\_s} \\ \end{array}} \right] \hbox { } \\ \end{array}}\\ \qquad \bot \hbox { }co2\_s_{h,n,s,a} \ge 0 \\ \end{array} } \end{aligned}$$
$$\begin{aligned} {\begin{array}{ll} {\begin{array}{l} \frac{\partial L^{S,N}}{\partial inv\_co2\_s_{n,s,a} }: \\ 0\le \left[ {\begin{array}{l} \sum \limits _{aa\in I\_USE\_CO2_{s,a,aa} } PD_{aa} \cdot DF_{aa}\\ \cdot \left( {FC\_CO2_{n,s,aa} +INVC\_CO2_{n,s,aa} } \right) \\ -\sum \limits _h {\sum \limits _{aa\in I\_USE\_CO2_{s,a,aa} } {\lambda _{h,n,s,aa}^{cap\_co2\_s} } } +\lambda _{s,a}^{diff\_co2\_s}\\ -\sum \limits _{aa>a} {\left( {\lambda _{s,aa}^{diff\_co2\_s} \cdot DIFF\_CO2_s } \right) } \\ \end{array}} \right] \\ \hbox { } \\ \end{array}}&{} {\bot \hbox { }inv\_co2\_s_{n,s,a} \ge 0} \\ \end{array} } \end{aligned}$$
$$\begin{aligned} \begin{array}{l} \frac{\partial L^{S,N}}{\partial \lambda _{h,n,s,a}^{cap\_co2\_s} }: \\ 0\le \sum \limits _{aa\in USE\_CO2_{s,a,aa} } {inv\_co2\_s_{n,s,aa} } -co2\_s_{h,n,s,a} \hbox { }\bot \hbox { }\lambda _{h,n,s,a}^{cap\_co2\_s} \ge 0 \\ \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{l} \frac{\partial L^{S,N}}{\partial \lambda _{n,s,a}^{\max \_stor} }: \\ 0\le MAX\_STOR_{n,s} -\sum \limits _h {\left( {TD_h \cdot \sum \limits _{aa\le a} {PD_{aa} \cdot co2\_s_{h,n,s,aa} } } \right) } \hbox { }\bot \hbox { }\lambda _{n,s,a}^{\max \_stor} \ge 0 \\ \end{array} \end{aligned}$$
$$\begin{aligned}&\tfrac{\partial L^{S,N}}{\partial \lambda _{s,a}^{diff\_co2\_s} }: \nonumber \\&0\le \left( {START\_CO2_s +\sum \limits _n {\sum \limits _{aa<a} {inv\_co2\_s_{n,s,aa} } } } \right) \cdot DIFF\_CO2_s\nonumber \\&\qquad -\sum \limits _n {inv\_co2\_s_{n,s,a} } \hbox { }\bot \hbox { }\lambda _{s,a}^{diff\_co2\_s} \ge 0 \end{aligned}$$

Market clearing conditions across all sectors

$$\begin{aligned} 0= & {} \sum \limits _t {\left( {g_{h,n,t,a} +\sum \limits _{aa\in USE\_EL_{t,a,aa} } {g\_cfd_{h,n,t,aa,a} } } \right) } +\sum \limits _{nn} {el\_t_{h,nn,n,a} }\nonumber \\&-\sum \limits _{nn} {el\_t_{h,n,nn,a} } -\left( {D_{h,n,a} -RES\_OLD_{h,n,a} } \right) mu\_e_{h,n,a} \hbox { }(free)\quad \forall h,n,a \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\tfrac{\partial L^{T,N}}{\partial \lambda _{h,a}^{curt\_el} }: \nonumber \\&0\le \sum \limits _n {\left( {D_{h,n,a} -RES\_OLD_{h,n,a} } \right) }\nonumber \\&\qquad -\sum \limits _{n,t} {\left( {g_{h,n,t,a} +\sum \limits _{aa\in USE\_EL_{t,a,aa} } {g\_cfd_{h,n,t,aa,a} } } \right) } \hbox { }\bot \hbox { }\lambda _{h,a}^{curt\_el} \ge 0 \end{aligned}$$
$$\begin{aligned} 0= & {} -\left( {\begin{array}{l} \sum \limits _t {\left( {\sum \limits _{aa\in USE\_EL_{t,a,aa} } {g\_cfd_{h,n,t,aa,a} } \cdot EF\_EL_t \cdot CR\_G_t } \right) } \\ +\sum \limits _i {co2\_c_{h,n,i,a} } \\ +\sum \limits _{nn} {co2\_t_{h,nn,n,a} } -\sum \limits _{nn} {co2\_t_{h,n,nn,a} } -\sum \limits _s {co2\_s_{h,n,s,a} } \\ \end{array}} \right) \nonumber \\&mu\_co2_{h,n,a} \hbox { }(free)\quad \forall h,n,a \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mendelevitch, R., Oei, PY. The impact of policy measures on future power generation portfolio and infrastructure: a combined electricity and CCTS investment and dispatch model (ELCO). Energy Syst 9, 1025–1054 (2018).

Download citation


  • Energy policy
  • Electricity
  • CO\(_{2}\)
  • CCS
  • UK
  • EOR
  • Modeling

JEL Classification

  • C61
  • L94
  • O33
  • Q42