Energy Systems

, Volume 9, Issue 2, pp 385–414 | Cite as

Optimization on long term supply allocation of Indonesian coal to domestic market

  • Fadhila Achmadi RosyidEmail author
  • Tsuyoshi Adachi
Original Paper


Indonesian coal production and consumption are expected to increase within the foreseeable period. The coal production is estimated to reach its peak in 2026 and subsequently will be decreased. Meanwhile the consumption will continually increase. The coal production that is greater than the domestic coal consumption raises a problem of resource allocation in Indonesian energy sector. In this study Indonesian coal resource allocation within the foreseeable period of 2014–2030 is solved using linear programming method. Linear programming optimizes the coal resource allocation by minimizing logistic cost which consist of coal purchasing cost and transportation cost from producer’s transshipment to consumers. The optimization results of resource allocation optimization indicate a change of Indonesian coal suppliers in the domestic market with respect to time to reach the minimum logistic cost. Sensitivity analysis indicates that the pattern of resource allocation will be more affected by coal purchasing cost than transportation cost. Also, the existence of the stock will not change the pattern of resource allocation but will affect the total logistic cost although not significant. Related to domestic market obligation (DMO), stipulation of coal basin priority as supplier of a consumer area with respect to time will ensure the fulfilment of DMO quota for the mining companies.


Indonesian coal Resources allocation Linear programming 


  1. 1.
  2. 2.
    Geological Agency of the Republic of Indonesia: Executive summary: pemutakhiran data dan neraca sumberdaya energy status 2015. Ministry of Energy and Mineral Resources, Republic of Indonesia (2015).
  3. 3.
    Koesoemadinata, R.P.: Outline of tertiary coal basin of Indonesia. Ber. Sedimentol. 15, 1–27 (2001)Google Scholar
  4. 4.
    Mezher, T., Chedid, R., Zahabi, W.: Energy resources allocation using multi-objective goal programming: the case of Lebanon. Appl. Energy 61, 175–192 (1998). doi: 10.1016/S0306-2619(98)00043-9 CrossRefGoogle Scholar
  5. 5.
    Seebregts, A.J., Goldstein, G.A., Smekens, K.: Energy/environmental modeling with the MARKAL family of models. In: Operation Research Proceedings, pp. 75–82 (2001). doi: 10.1007/978-3-642-50282-8_10
  6. 6.
    Mallah, S., Bansal, N.K.: Allocation of energy resources for power generation in India: business as usual and energy efficiency. Energy Policy 38, 1059–1066 (2010). doi: 10.1016/j.enpol.2009.10.058 CrossRefGoogle Scholar
  7. 7.
    Stanford, C.E.: Coal resources, production, and use in Indonesia. In: The Coal Handbook: Toward cleaner production–Volume 2: Coal Utilisation. Woodhead Publishing Series in Energy (2013). ISBN:978-1-78242-116-0Google Scholar
  8. 8.
    Lucarelli, B.: The history and future of Indonesia’s coal industry: impact of politics and regulatory framework on industry structure and performance. Program on Energy and Sustainable Development, Stanford University, USA. Working paper, 93 (2010).
  9. 9.
    Kurz, H.D., Salvadori, N.: On the theory of exhaustible resources: Ricardo vs. Hotelling. The Institute of Social and Economic Research, Osaka University. Discussion Paper No. 756 (2009). doi: 10.2139/ssrn.1485282
  10. 10. in cooperation with Indonesian Coal Mining Association, Indonesian Coal Book 2014/2015Google Scholar
  11. 11.
    Badan Standardisasi Nasional—Indonesia, Standar Nasional Indonesia: Klasifikasi sumberdaya dan cadangan batubara. Amandemen 1—SNI—13-5014-1998 (1998).
  12. 12.
    Hustrulid, W., Kuchta, M.: Open Pit Mine Planning and Design: Fundamentals, vol. 1. Taylor and Francis Ltd, London (2006)Google Scholar
  13. 13.
  14. 14.
    Belanina, E.: Multimodal coal transportation in Indonesia. Master thesis in Urban, Port, and Transport Economics, Erasmus University Rotterdam (2013).
  15. 15. in cooperation with Indonesian Coal Mining Association, Indonesian Coal Book 2008/2009Google Scholar
  16. 16.
    Baruya, P.: Impact of seaborne trade on coal importing countries–Pacific market. IEA Clean Coal Center (2012). ISBN 978-92-9029-522-8.
  17. 17.
    Lai, J.W., Chen, C.Y.: A cost minimization model for coal import strategy. Energy Policy 24, 1111–1117 (1996). doi: 10.1016/S0301-4215(96)00091-2 CrossRefGoogle Scholar
  18. 18.
    Liu, C.M., Sherali, H.D.: A coal shipping and blending problem for an electric utility company. Int. J. Manag. Sci.-Omega 28, 433–444 (2000). doi: 10.1016/S0305-0483(99)00067-5
  19. 19.
    Mou, D., Li, Z.: A spatial analysis of China’s coal flow. Energy Policy 48, 358–368 (2012). doi: 10.1016/j.enpol.2012.05.034 CrossRefGoogle Scholar
  20. 20.
    Zucekaya, A.: Cost minimizing coal logistics for power plants considering transportation constraints. J. Traffic Logist. Eng. 1, 122–127 (2013). doi: 10.12720/jtle.1.2.122-127 CrossRefGoogle Scholar
  21. 21.
    Patzek, T.W., Croft, G.D.: A global coal production forecast with multi-Hubbert cycle analysis. Energy 35, 3109–3122 (2010). doi: 10.1016/ CrossRefGoogle Scholar
  22. 22.
    Hook, M., Zittel, W., Schindler, J., Aleklett, K.: Global coal production outlooks based on a logistic model. Fuel 89, 3546–3558 (2010). doi: 10.1016/j.fuel.2010.06.013 CrossRefGoogle Scholar
  23. 23.
    Hook, M., Junchen, L., Oba, N., Snowden, S.: Descriptive and predictive growth curves in energy system analysis. Nat. Resour. Res. 20, 103–116 (2011). doi: 10.1007/s11053-011-9139-z CrossRefGoogle Scholar
  24. 24.
    Mohr, S.M., Evans, G.M.: Forecasting coal production until 2100. Fuel 88, 2059–2067 (2009). doi: 10.1016/j.fuel.2009.01.032 CrossRefGoogle Scholar
  25. 25.
    Yu, S., Wei, Y.: Prediction of China’s coal production-environmental pollution based on a hybrid genetic algorithm-system dynamics model. Energy Policy 42, 521–529 (2012). doi: 10.1016/j.enpol.2011.12.018 CrossRefGoogle Scholar
  26. 26.
    Ward, J.: Peak phosphorus: quoted reserves vs production history. Published by Energy Bulletin (2008).
  27. 27.
    Rosyid, F.A., Adachi, T.: Coal mining in Indonesia: forecasting by the growth curve method. Miner. Econ. 29, 71–85 (2016). doi: 10.1007/s13563-016-0091-6 CrossRefGoogle Scholar
  28. 28.
    Yan, W., Jingwen, L.: China’s present situation of coal consumption and future coal demand forecast. China Popul. Resour. Environ. 18, 152–155 (2008). doi: 10.1016/S1872-583X(09)60009-7 CrossRefGoogle Scholar
  29. 29.
    Volkan, S.E., Sertac, A.: ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 35, 1701–1708 (2007). doi: 10.1016/j.enpol.2006.05.009 CrossRefGoogle Scholar
  30. 30.
    Bo-qian, L., Jiang-hua, L.: Estimating coal production peak and trends of coal imports in China. Energy Policy 38, 512–519 (2010). doi: 10.1016/j.enpol.2009.09.042 CrossRefGoogle Scholar
  31. 31.
    Livernois, J.R., Uhler, R.S.: Extraction cost and the economics of nonrenewable resources. J. Polit. Econ. 95 (1987).
  32. 32.
    Reynolds, D.B.: The mineral economy: how prices and costs can falsely signal decreasing scarcity. Ecol. Econ. 31, 155–166 (1999). doi: 10.1016/S0921-8009(99)00098-1 CrossRefGoogle Scholar
  33. 33.
    Tilton, J.E., Skinner, B.J.: The meaning of resources. In: McLaren, D.J., Skinner, B.J. (eds.) Resources and World Development, pp. 13–27. Wiley, New York (1987)Google Scholar
  34. 34.
    Pricewaterhouse Coopers, Mine Indonesia (2007).
  35. 35.
    PT. Adaro Energy, Tbk. 2008–2013. Annual report.
  36. 36.
  37. 37.
    PT. Baramulti Suksessarana, Tbk. 2012–2013. Annual report.
  38. 38.
    PT. Indika Energy, Tbk. 2009–2013. Annual report.
  39. 39.
    PT. Berau Coal Energy, Tbk. 2010–2013. Annual report.
  40. 40.
    PT. Bukit Asam, Tbk. 2006–2013. Annual report.
  41. 41.
    PT. Harum Energy, Tbk. 2010–2013. Annual report.
  42. 42.
    PT. Borneo Lumbung Energy & Metal, Tbk. 2011–2013. Annual report.
  43. 43.
    PT. Bayan Resources, Tbk. 2010–2013. Annual report.
  44. 44.
    PT. Indo Tambangraya Megah, Tbk. 2007–2013. Annual report.
  45. 45.
    Rosyid, F.A., Adachi, T.: Forecasting on Indonesian coal production and future extraction cost: a tool for formulating policy on coal marketing. Nat. Resour. 7, 677–696 (2016). doi: 10.4236/nr.2016.712054 Google Scholar
  46. 46.
    United States Environmental Protection Agency (US-EPA): Documentation for EPA Base Case v.5.13 Using the Integrated Planning Model. US-EPA (2013).

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Graduate School of Engineering and Resources SciencesAkita UniversityAkitaJapan
  2. 2.Faculty of International Resources SciencesAkita UniversityAkitaJapan
  3. 3.Department of Mining EngineeringThe Institute Technology of BandungBandungIndonesia

Personalised recommendations