Skip to main content

Non-dominated sorting differential evolution algorithm for the minimization of route based fuel consumption multiobjective vehicle routing problems

Abstract

In this paper, three parallel multi-start non-dominated sorting differential evolution algorithms (PMS-NSDEs) are proposed for the solution of four multiobjective route based fuel consumption vehicle routing problems (MRFCVRPs) and their results are compared with the results of a parallel multi-start NSGA II algorithm. All these algorithms use more than one initial population of solutions. In each algorithm a variable neighborhood search algorithm for the improvement of each solution separately is used. The problems that are formulated with two competitive objective functions are the multiobjective symmetric and asymmetric delivery route based fuel consumption vehicle routing problem (MSDRFCVRP and MADRFCVRP) and the multiobjective symmetric and asymmetric pick-up route based fuel consumption vehicle routing problem (MSPRFCVRP and MAPRFCVRP). The objective functions correspond to the optimization of the time needed for the vehicle to travel between two customers or between the customer and the depot and to the route based fuel consumption of the vehicle considering the traveled distance, the load of the vehicle, the slope of the road, the speed and the direction of the wind, and the driver’s behavior when the decision maker plans delivery or pick-up routes. A number of modified Vehicle Routing Problem instances are used in order to measure the quality of the proposed algorithms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abbass, H.A.: A memetic pareto evolutionary approach to artificial neural networks. The Australian joint conference on artifficial intelligence 2256, 1–12 (2001)

    MATH  Google Scholar 

  2. Abbass, H.A.: The self-adaptive pareto differential evolution algorithm. In: IEEE Congress on evolutionary computation (CEC2002), vol. 1, pp. 831–836 (2002)

  3. Abbass, H.A., Sarker, R.: The pareto differential evolution algorithm. Int. J. Artif. Intell. Tools 11(4), 531–552 (2002)

    Article  Google Scholar 

  4. Abbass, H. A., Sarker, R., Newton, C.: PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems. In: IEEE proceedings of the congress on evolutionary computation 2001 (CEC2001), vol. 2, pp. 971–978 (2001)

  5. Bandeira, J.M., Fontes, T., Pereira, S.R., Fernandes, P., Khattak, A., Coelho, M.C.: Assessing the importance of vehicle type for the implementation of eco-routing systems. Transp. Res. Proc. 3, 800–809 (2014)

    Article  Google Scholar 

  6. Bektas, T., Laporte, G.: The pollution-routing problem. Transp. Res. Part B 45, 1232–1250 (2011)

    Article  Google Scholar 

  7. Chand, P., Mohanty, J.R.: Multi objective genetic approach for solving vehicle routing problem. Int. J. Comput. Theory Eng. 5(6), 846–849 (2013)

    Article  Google Scholar 

  8. Chakraborty, U.K.: Advances in differential evolution, Studies in computational intelligence, vol. 143. Springer-Verlag, Berlin, Heidelberg (2008)

    Google Scholar 

  9. Chang, C.S., Xu, D.Y., Quek, H.B.: Pareto-optimal set based multiobjective tuning of fuzzy automatic train operation for mass transit system. IEE Proc. Electr. Power Appl. 146(5), 577–583 (1999)

    Article  Google Scholar 

  10. Charoenroop, N., Satayopas, B., Eungwanichayapant, A.: City bus routing model for minimal energy consumption. Asian J. Energy Environ. 11(01), 19–31 (2010)

    Google Scholar 

  11. Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In: Christofides, N., Mingozzi, A., Toth, P., Sandi, C. (eds.) Combinatorial Optimization. Wiley, Chichester (1979)

    Google Scholar 

  12. Cicero-Fernandez, P., Long, J.R., Winer, A.M.: Effects of grades and other loads on on-road emissions of hydrocarbons and carbon monoxide. Air and Waste Management Association 47, 898–904 (1997)

    Article  Google Scholar 

  13. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B. (2007) Evolutionary Algorithms for Solving Multi-Objective Problems, Springer

  14. Cullen, S.: Trees and wind: Wind scales and speeds. Journal of Arboriculture 28(5), 237–242 (2002)

    Google Scholar 

  15. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) Proceedings of the parallel problem solving from nature VI conference, LNCS 1917, pp. 849–858 (2000)

  16. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  17. Demir, E., Bektas, T., Laport, G.: The bi-objective pollution-routing problem. Eur. J. Oper. Res. 232, 464–478 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  18. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Engelbrecht, A.P.: Computational intelligence: an introduction. Wiley, England (2007)

    Book  Google Scholar 

  20. Erbao, C., Mingyong, L.: A hybrid differential evolution algorithm to vehicle routing problem with fuzzy demands. J. Comput. Appl. Math. 231(1), 302–310 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  21. Erbao, C., Mingyong, L.: The open vehicle routing problem with fuzzy demands. Expert Syst. Appl. 37(3), 2405–2411 (2010)

    Article  MATH  Google Scholar 

  22. Erbao, C., Mingyong, L., Yang, H.: Open vehicle routing problem with demand uncertainty and its robust strategies. Expert Syst. Appl. 41(7), 3569–3575 (2014)

    Article  Google Scholar 

  23. Erdogan, S., Miller-Hooks, E.: A green vehicle routing problem. Transp. Res. Part E 48, 100–114 (2012)

    Article  Google Scholar 

  24. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedure. J. Glob. Optim. 6, 109–133 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  25. Figliozzi, M.: Vehicle routing problem for emissions minimization. Transp. Res. Rec. J Transp. Res. Board 2, 1–7 (2011)

    Google Scholar 

  26. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32, 675–701 (1937)

    Article  MATH  Google Scholar 

  27. Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11, 86–92 (1940)

    MathSciNet  Article  MATH  Google Scholar 

  28. Garcia, S., Herrera, F.: An extension on ’Statistical comparisons of classifiers over multiple data sets’ for all pairwise comparisons. Mach. Learn. Res. 9, 2677–2694 (2008)

    MATH  Google Scholar 

  29. Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  30. Huayu, X., Wenhui, F., Tian, W., Lijun, Y.: An or-opt NSGA-II algorithm for multi-objective vehicle routing problem with time windows. In: 4th IEEE conference on automation science and engineering, pp. 309–314 (2008)

  31. Iman, R.L., Davenport, J.M.: Approximations of the critical region of the Friedman statistic. In: Communications in statistics, pp. 571–595 (1980)

  32. Iorio, A.W., Li, X.: Solving rotated multi-objective optimization problems using differential evolution. In: AI 2004: advances in artificial intelligence, vol. 3339, pp. 861–872 (2004)

  33. Jemai, J., Zekri, M., Mellouli, K.: An NSGA-II algorithm for the green vehicle routing problem. Evol. Comput. Comb. Optim. Lect. Notes Comput. Sci. 7245, 37–48 (2012)

    Article  MATH  Google Scholar 

  34. Johnson, D.S., Papadimitriou, C.H.: Computational complexity. In: Lawer, E.L., Lenstra, J.K., Rinnoy Kan, A.H.D., Shmoys, D.B., (eds.) The traveling salesman problem: a guided tour of combinatorial optimization, pp. 37–85. New York, Wiley (1985)

  35. Jozefowiez, N., Semet, F., Talbi, E.G.: Enhancements of NSGA II and its application to the vehicle routing problem with route balancing. Artif. Evol. Lect. Notes Comput. Sci. 3871, 131–142 (2006)

    Article  Google Scholar 

  36. Jozefowiez, N., Semet, F., Talbi, E.G.: Multi-objective vehicle routing problems. Eur. J. Oper. Res. 189, 293–309 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  37. Kara, I., Kara, B.Y., Yetis, M.K.: Energy minimizing vehicle routing problem. COCOA 2007, 62–71 (2007)

    MathSciNet  Google Scholar 

  38. Koc, C., Bektas, T., Jabali, O., Laporte, G.: The fleet size and mix pollution-routing problem. Transp. Res. Part B 70, 239–254 (2014)

    Article  MATH  Google Scholar 

  39. Kontovas, C.A.: The green ship routing and scheduling problem (GSRSP): A conceptual approach. Transp. Res. Part D 31, 61–69 (2014)

    Article  Google Scholar 

  40. Kukkonen, S., Lampinen, J.: An extension of generalized differential evolution for multi-objective optimization with constraints. In: Parallel Problem Solving from Nature—PPSN VIII, LNCS, vol. 3242, pp. 752–761 (2004)

  41. Kumar, R.S., Kondapaneni, K., Dixit, V., Goswami, A., Thakur, L.S., Tiwari, M.K.: Multi-objective modeling of production and pollution routing problem with time window: a self-learning particle swarm optimization approach. Comput. Ind. Eng. (pii:S0360–8352(15)00287–9) (2015)

  42. Kuo, Y.: Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing problem. Comput. Ind. Eng. 59(1), 157–165 (2010)

    MathSciNet  Article  Google Scholar 

  43. Labadie, N., Prodhon, C.: A survey on multi-criteria analysis in logistics: Focus on vehicle routing problems. In: Applications of multi-criteria and game theory approaches springer series in advanced manufacturing, pp. 3–29 (2014)

  44. Lahyani, R., Khemakhem, M., Semet, F.: Rich vehicle routing problems: from a taxonomy to a definition. Eur. J. Oper. Res. 241, 1–14 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  45. Laporte, G.: The vehicle routing problem: An overview of exact and approximate algorithms. Eur. J. Oper. Res. 59, 345–358 (1992)

    Article  MATH  Google Scholar 

  46. Lawer, E.L., Lenstra, J.K., Rinnoy Kan, A.H.G.R., Shmoys, D.B.: The traveling salesman problem: a guided tour of combinatorial optimization. New York, Wiley (1985)

  47. Leonardi, J., Baumgartner, M.: \(CO_2\) efficiency in road freight transportation: Status quo, measures and potential. Transp. Res. Part D 9, 451–464 (2004)

    Article  Google Scholar 

  48. Li, H., Lv, T., Li, Y.: The tractor and semitrailer routing problem with many-to-many demand considering carbon dioxide emissions. Transp. Res. Part D 34, 68–82 (2015)

    Article  Google Scholar 

  49. Li, J.: Vehicle routing problem with time windows for reducing fuel consumption. J. Comput. 7(12), 3020–3027 (2012)

    Google Scholar 

  50. Lin, C., Choy, K.L., Ho, G.T.S., Ng, T.W.: A genetic algorithm-based optimization model for supporting green transportation operations. Expert Syst. Appl. 41, 3284–3296 (2014)

    Article  Google Scholar 

  51. Lin, C., Choy, K.L., Ho, G.T.S., Chung, S.H., Lam, H.Y.: Survey of green vehicle routing problem: Past and future trends. Expert Syst. Appl. 41(4), 1118–1138 (2014)

    Article  Google Scholar 

  52. Lin, S.: Computer solutions of the traveling salesman problem. Bell Syst. Tech. J. 44, 2245–2269 (1965)

    MathSciNet  Article  MATH  Google Scholar 

  53. Marinakis, Y., Iordanidou, G.R., Marinaki, M.: Particle swarm optimization for the vehicle routing problem with stochastic demands. Appl. Soft Comput. 13, 1693–1704 (2013)

    Article  Google Scholar 

  54. Marinakis, Y., Marinaki, M., Spanou P.: A memetic differential evolution algorithm for the vehicle routing problem with stochastic demands. In: Fister, I., Fister, I., Jr. (eds.) Adaptation and hybridization in computational intelligence, adaptation, learning, and optimization, vol. 18, pp. 185–203 (2015)

  55. McKinnon, A.: A logistical perspective on the fuel efficiency of road freight transport. In: Workshop Proceedings, Paris, OECD, ECMT and IEA (1999)

  56. McKinnon, A.: Green logistics: the carbon agenda. Electron. Sci. J. Logist. 6(3), 1–9 (2010)

    MathSciNet  Google Scholar 

  57. Mezura-Montes, E., Reyes-Sierra, M., Coello Coello, C.: Multi-objective optimization using differential evolution: a survey of the state-of-the-art. In: Advances in differential evolution, studies in computational intelligence, vol. 143. Springer-Verlag, Berlin, Heidelberg (2008)

  58. Mingyong, L., Erbao, C.: An improved differential evolution algorithm for vehicle routing problem with simultaneous pickups and deliveries and time windows. Eng. Appl. Artif. Intell. 23(2), 188–195 (2010)

    Article  Google Scholar 

  59. Molina, J.C., Eguia, I., Racero, J., Guerrero, F.: Multi-objective vehicle routing problem with cost and emission functions. Proc. Soc. Behav. Sci. 160, 254–263 (2014)

    Article  Google Scholar 

  60. Okabe, T., Jin, Y., Sendhoff, B.: A critical survey of performance indices for multi-objective optimization. Evol. Comput. 2, 878–885 (2003)

    Google Scholar 

  61. Ombuki, B., Ross, B.J., Hanshar, F.: Multi-objective genetic algorithms for vehicle routing problem with time windows. Appl. Intell. 24, 17–30 (2006)

    Article  Google Scholar 

  62. Parsopoulos, K.E., Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Vector evaluated differential evolution for multiobjective optimization. In: 2004 Congress on evolutionary computation (CEC 2004), Portland, June 2004, vol. 1, pp. 204-211, IEEE Service Center (2004)

  63. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential evolution: a practical approach to global optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  64. Psychas, I.D., Delimpasi, E., Marinakis, Y.: Hybrid evolutionary algorithms for the multiobjective traveling salesman problem. Expert Syst. Appl. doi:10.1016/j.eswa.2015.07.051 (2015, in press)

  65. Psychas, I.D., Marinaki, M., Marinakis, Y.: A parallel multi-start NSGA II algorithm for multiobjective energy reduction vehicle routing problem. In: Gaspar-Cunha, A. et al. (eds.) 8th International conference on evolutionary multicriterion optimization, EMO 2015, Part I, LNCS 9018, Springer International Publishing Switzerland 2015, pp. 336–350 (2015)

  66. Robic, T., Filipic, B.: DEMO: differential evolution for multiobjective optimization, evolutionary multi-criterion optimization. In: Third International Conference, EMO 2005, vol. 3410, pp. 520–533 (2005)

  67. Santana-Quintero, L.V.: Coello Coello, C.A.: An algorithm based on differential evolution for multi-objective problems. Int. J. Comput. Intell. Res. 1(2), 151–169 (2005)

    MathSciNet  Article  Google Scholar 

  68. Sarker, R., Coello Coello, C.A.: Assessment methodologies for multiobjective evolutionary algorithms. In: Evolutionary optimization, international series in operations research and management science, vol. 48, pp. 177–195 (2002)

  69. Sauer, J. G.: Discrete differential evolution with local search to solve the traveling salesman problem: fundamentals and case studies. In: Cybernetic intelligent systems, pp. 1–6 (2008)

  70. Sbihi, A., Eglese, R.W.: Combinatorial optimization and green logistics. 4OR 5(2), 99–116 (2007)

  71. Schaffer, J.: Some experiments in machine learning using vector evaluated genetic algorithms, PhD thesis, Vanderbilt University (1984)

  72. Silva, A. L., Ramirez, J. A., Campelo, F.: A statistical study of discrete differential evolution approaches for the capacitated vehicle routing problem. In: Proceedings of the 15th annual conference companion on genetic and evolutionary computation, (GECCO ’13 Companion), pp. 77–78 (2013)

  73. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  74. Suzuki, Y.: A new truck-routing approach for reducing fuel consumption and pollutants emission. Transp. Res. Part D 16, 73–77 (2011)

    Article  Google Scholar 

  75. Tajik, N., Tavakkoli-Moghaddam, R., Vahdani, B.: Meysam Mousavi, S.: A robust optimization approach for pollution routing problem with pickup and delivery under uncertainty. J. Manuf. Syst. 33, 277–286 (2014)

    Article  Google Scholar 

  76. Tiwari, A., Chang, P.C.: A block recombination approach to solve green vehicle routing problem. Int. J. Prod. Econ., pp. 1–9 (2002)

  77. Toth, P., Vigo, D.: The vehicle routing problem. Monographs on Discrete Mathematics and Applications, Siam (2002)

    Book  MATH  Google Scholar 

  78. Toth, P., Vigo, D.: Vehicle routing: Problems, methods and applications, MOS-Siam Series on Optimization, 2nd edn. Siam, Philadelphia (2014)

    Book  Google Scholar 

  79. Weizhen, R., Chun, J.: A model of vehicle routing problem minimizing energy consumption in urban environment. In: Asian conference of management science & applications, September 2012, Chengdu-Jiuzhaigou, pp. 21–29 (2012)

  80. Xiao, Y., Zhao, Q., Kaku, I., Xu, Y.: Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Comput. Oper. Res. 39(7), 1419–1431 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  81. Xue, F.: Multi-objective differential evolution: theory and applications, PhD thesis, Rensselaer Polytechnic Institute, New York (2004)

  82. Xue, F., Sanderson, A.C., Graves, R.J.: Pareto-based multiobjective differential evolution. In: IEEE Proceedings of the 2003 congress on evolutionary computation (CEC2003), vol. 2, pp. 862–869 (2003)

  83. Zhang, S., Lee, C.K.M., Choy, K.L., Ho, W., Ip, W.H.: Design and development of a hybrid artificial bee colony algorithm for the environmental vehicle routing problem. Transp. Res. Part D 31, 85–99 (2014)

    Article  Google Scholar 

  84. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis Marinakis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Psychas, ID., Marinaki, M., Marinakis, Y. et al. Non-dominated sorting differential evolution algorithm for the minimization of route based fuel consumption multiobjective vehicle routing problems. Energy Syst 8, 785–814 (2017). https://doi.org/10.1007/s12667-016-0209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-016-0209-5

Keywords

  • Multiobjective route based fuel consumption vehicle routing problem
  • Parallel multi-start NSGA II
  • Parallel multi-start NSDE
  • Variable neighborhood search