Skip to main content
Log in

Multiobjective optimal power flow using a fuzzy based grenade explosion method

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

The aim of this paper is to solve the multiobjective optimal power flow (MOPF) problem using a new metaheuristic that is the grenade explosion method. The MOPF problem is formulated by assuming that the decision maker may have a fuzzy goal for each of the objective functions. Six objectives are considered which are: the minimization of generation fuel cost, the improvement of voltage profile, the enhancement of voltage stability, the reduction of emission and the minimization of active and reactive transmission losses. The proposed approach has been tested on the IEEE 30-bus test system. The obtained results show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cain, M., O’neill, R., Castillo, A.: History of optimal power flow and formulations, FERC Staff Tech. Pap., pp. 1–36 (2012)

  2. Glavitsch, H., Bacher, R.: Optimal power flow algorithms. In: Anal. Control Syst. Tech. Electr. Power Syst, vol. 41. Acad. Press Inc (1991)

  3. Sivasubramani, S., Swarup, K.S.: Multiagent based differential evolution approach to optimal power flow. Appl. Soft Comput. J. 12, 735–740 (2012). doi:10.1016/j.asoc.2011.09.016

    Article  Google Scholar 

  4. Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey I formulations and deterministic methods. Energy Syst. 3, 221–258 (2012). doi:10.1007/s12667-012-0056-y

    Article  Google Scholar 

  5. Bai, X., Wei, H., Fujisawa, K., Wang, Y.: Semidefinite programming for optimal power flow problems. Int. J. Electr. Power Energy Syst. 30, 383–392 (2008). doi:10.1016/j.ijepes.2007.12.003

    Article  Google Scholar 

  6. Gopalakrishnan, A., Raghunathan, A.U., Nikovski, D., Biegler, L.T., Global optimization of optimal power flow using a branch & bound algorithm. In: Commun. Control. Comput. (Allerton), 2012 50th Annu. Allert. Conf., pp. 609–616 (2012)

  7. AlRashidi, M., El-Hawary, M.: Applications of computational intelligence techniques for solving the revived optimal power flow problem. Electr. Power Syst. Res. 79, 694–702 (2009). doi:10.1016/j.epsr.2008.10.004

    Article  Google Scholar 

  8. Frank, S., Steponavice, I.: Optimal power flow: a bibliographic survey II non-deterministic and hybrid methods. Energy Syst. (2012) 259–289. doi:10.1007/s12667-012-0057-x

  9. Yuryevich, J.: Evolutionary programming based optimal power flow algorithm. IEEE Trans. Power Syst. 14, 1245–1250 (1999). doi:10.1109/59.801880

    Article  Google Scholar 

  10. Paranjothi, S.R., Anburaja, K.: Optimal power flow using refined genetic algorithm. Electr. Power Compon. Syst. 30, 1055–1063 (2002). doi:10.1080/15325000290085343

    Article  Google Scholar 

  11. Abido, M.A.: Optimal power flow using particle swarm optimization. Int. J. Electr. Power Energy Syst. 24, 563–571 (2002). doi:10.1016/S0142-0615(01)00067-9

    Article  Google Scholar 

  12. Abido, M.A.: Optimal power flow using tabu search algorithm. Electr. Power Compon. Syst. pp. 469–483 (2002). doi:10.1080/15325000252888425

  13. Roa-Sepulveda, C.A., Pavez-Lazo, B.J.: A solution to the optimal power flow using simulated annealing. Int. J. Electr. Power Energy Syst. 25, 47–57 (2003). doi:10.1016/S0142-0615(02)00020-0

    Article  Google Scholar 

  14. Optimal power flow using differential evolution algorithm: Abou El Ela, A.A., Abido, M.A., Spea, S.R. Electr. Power Syst. Res. 80, 878–885 (2010). doi:10.1016/j.epsr.2009.12.018

    Article  Google Scholar 

  15. Chattopadhyay, A.B.P.K.: Application of biogeography-based optimisation to solve different optimal power flow problems 5, 70–80 (2011). doi:10.1049/iet-gtd.2010.0237

    MathSciNet  Google Scholar 

  16. Ghanizadeh, A.J., Mokhtari, G., Abedi, M., Gharehpetian, G.B.: Optimal power flow based on imperialist competitive algorithm. Int. Rev. Electr. Eng. 6, 1847–1852 (2011)

    Google Scholar 

  17. Bouchekara, H.R.E.H., Abido, M.A., Chaib, A.E., Mehasni, R.: Optimal power flow using the league championship algorithm: a case study of the Algerian power system. Energy Convers. Manag. 87, 58–70 (2014). doi:10.1016/j.enconman.2014.06.088

    Article  Google Scholar 

  18. Bouchekara, H.R.E.H.: Optimal power flow using black-hole-based optimization approach. Appl. Soft Comput. (2014). doi:10.1016/j.asoc.2014.08.056

    Google Scholar 

  19. Bouchekara, H.R.E.H., Abido, M.A., Boucherma, M.: Optimal power flow using teaching-learning-based optimization technique. Electr. Power Syst. Res. 114, 49–59 (2014). doi:10.1016/j.epsr.2014.03.032

    Article  Google Scholar 

  20. Bouchekara, H.R.E.-H., Abido, M.A.: Optimal power flow using differential search algorithm. Electr. Power Compon. Syst. 42, 1683–1699 (2014). doi:10.1080/15325008.2014.949912

    Article  Google Scholar 

  21. Bouchekara, H.R.E.H., Chaib, A.E., Abido, M.A., El-Sehiemy, R.A.: Optimal power flow using an improved colliding bodies optimization algorithm. Appl. Soft Comput. 42, 119–131 (2016). doi:10.1016/j.asoc.2016.01.041

    Article  Google Scholar 

  22. Bouchekara, H.R.E.-H., Abido, M.A., Chaib, A.E.: Optimal power flow using an improved electromagnetism-like mechanism method. Electr. Power Compon. Syst. 44, 434–449 (2016). doi:10.1080/15325008.2015.1115919

    Article  Google Scholar 

  23. Chaib, A.E., Bouchekara, H.R.E.H., Mehasni, R., Abido, M.A.: Optimal power flow with emission and non-smooth cost functions using backtracking search optimization algorithm. Int. J. Electr. Power Energy Syst. 81, 64–77 (2016). doi:10.1016/j.ijepes.2016.02.004

    Article  Google Scholar 

  24. Sorensen, K.: Metaheuristics-the metaphor exposed. Int. Trans. Oper. Res. 22, 3–18 (2015). doi:10.1111/itor.12001

  25. Ahrari, A., Atai, A.A.: Grenade explosion method–a novel tool for optimization of multimodal functions. Appl. Soft. Comput. J. 10, 1132–1140 (2010). doi:10.1016/j.asoc.2009.11.032

    Article  Google Scholar 

  26. Ahrari, A., Shariat-Panahi, M., Atai, A.A.: GEM: a novel evolutionary optimization method with improved neighborhood search. Appl. Math. Comput. 210, 376–386 (2009). doi:10.1016/j.amc.2009.01.009

    MathSciNet  MATH  Google Scholar 

  27. Kessel, P., Glavitsch, H.: Estimating the voltage stability of a power system. IEEE Trans. Power Deliv. 1, 346–354 (1986). doi:10.1109/TPWRD.1986.4308013

    Article  Google Scholar 

  28. Behrangrad, M., Sugihara, H., Funaki, T.: Effect of optimal spinning reserve requirement on system pollution emission considering reserve supplying demand response in the electricity market. Appl. Energy. 88, 2548–2558 (2011). doi:10.1016/j.apenergy.2011.01.034

    Article  Google Scholar 

  29. Abido, M.A.: Environmental/economic power dispatch using multiobjective evolutionary algorithms. IEEE Trans. Power Syst. 18, 1529–1537 (2003). doi:10.1109/TPWRS.2003.818693

    Article  Google Scholar 

  30. Jubril, A.M., Olaniyan, O.A., Komolafe, O.A., Ogunbona, P.O.: Economic-emission dispatch problem: a semi-definite programming approach. Appl. Energy 134, 446–455 (2014). doi:10.1016/j.apenergy.2014.08.024

    Article  Google Scholar 

  31. Frank, S., Rebennack, S.: A primer on optimal power flow: theory, formulation, and practical examples. Colorado School of Mines, Tech. Rep (2012)

  32. Collette, Y., Siarry, P.: Optimisation multiobjectif. ÉDITIONS EYROLLES, Paris (2002)

  33. Sakawa, M.: Genetic Algorithms And Fuzzy Multiobjective Optimization. Kluwer Academic Publishers Norwell, MA, USA (2001)

  34. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26, 369–395 (2004). doi:10.1007/s00158-003-0368-6

    Article  MathSciNet  MATH  Google Scholar 

  35. Engin, T.J., Sci, E.: A comparative study of multiobjective optimization methods in ok Objektifli Optimizasyon Tekniklerinin Mukayeseli Bir. Chem. Eng. 25, 69–78 (2001)

    Google Scholar 

  36. C.E.M.-S. & D. (David) G. Ray D. Zimmerman, MATPOWER, http://www.pserc.cornell.edu/matpower

  37. Vaisakh, K., Srinivas, L.R., Meah, K.: A genetic evolving ant direction DE for OPF with non-smooth cost functions and statistical analysis. Energy, pp. 3155–3171 (2010). doi:10.1007/s00202-012-0251-9

  38. Vaisakh, K., Srinivas, L.R.: Evolving ant direction differential evolution for OPF with non-smooth cost functions. Eng. Appl. Artif. Intell. 24, 426–436 (2011). doi:10.1016/j.engappai.2010.10.019

    Article  Google Scholar 

  39. Liang, R.-H., Tsai, S.-R., Chen, Y.-T., Tseng, W.-T.: Optimal power flow by a fuzzy based hybrid particle swarm optimization approach. Electr. Power Syst. Res. 81, 1466–1474 (2011). doi:10.1016/j.epsr.2011.02.011

    Article  Google Scholar 

  40. Lai, M.Z.L.L., Ma, J.T., Yokoyama, R.: Improved genetic algorithms for optimal power flow under both normal and contingent operation states. Electr. Power Energy Syst. 19, 287–292 (1997)

    Article  Google Scholar 

  41. Bakirtzis, A.G., Biskas, P.N., Zoumas, C.E., Petridis, V.: Optimal power flow by enhanced genetic algorithm. IEEE Trans. Power Syst. 17, 229–236 (2002). doi:10.1109/TPWRS.2002.1007886

    Article  Google Scholar 

  42. Sayah, S., Zehar, K.: Modified differential evolution algorithm for optimal power flow with non-smooth cost functions. 49, 3036–3042 (2008). doi:10.1016/j.enconman.2008.06.014

    Google Scholar 

  43. Ongsakul, W., Tantimaporn, T.: Optimal power flow by improved evolutionary programming. Electr. Power Components Syst. 34, 79–95 (2006). doi:10.1080/15325000691001458

    Article  Google Scholar 

  44. Lee, K.Y., Park, Y.M., Ortiz, J.L.: A united approach to optimal real and reactive power dispatch. IEEE Trans. Power Appar. Syst. PAS-104, 1147–1153 (1985). doi:10.1109/TPAS.1985.323466

  45. Marques De Sá, J.P.: Applied statistics using SPSS, STATISTICA. MATLAB and R (2007). doi:10.1007/978-3-540-71972-4

  46. Bouchekara, H.R.E.H., Kedous-Lebouc, A., Yonnet, J.P., Chillet, C.: Multiobjective optimization of AMR systems. Int. J. Refrig. 37, 63–71 (2014). doi:10.1016/j.ijrefrig.2013.09.009

    Article  Google Scholar 

Download references

Acknowledgments

Dr. M. A. Abido would like to acknowledge the support provided by King Abdulaziz City for Science and Technology (KACST) through the Science and Technology Unit at King Fahd University of Petroleum and Minerals (KFUPM) for funding this work through Project # 14-ENE265-04 as a part of the National Science, Technology and Innovation Plan (NSTIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. E. H. Bouchekara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchekara, H.R.E.H., Chaib, A.E. & Abido, M.A. Multiobjective optimal power flow using a fuzzy based grenade explosion method. Energy Syst 7, 699–721 (2016). https://doi.org/10.1007/s12667-016-0206-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-016-0206-8

Keywords

Navigation