Skip to main content

Advertisement

Log in

A dynamic decision model for the optimal use of forest biomass for energy production

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

The use of forest biomass for energy production requires a careful attention to the sustainable silvicultural practices. This is a complex task because of the different environmental and economic issues to be taken into account. To this aim, suitable tools must be used as regards the representation of the dynamics of forest biomass and the economic assessment. In this paper, a user-friendly optimization-based decision support system (DSS) that can help decision makers in the optimal management of forest biomass use for energy production is presented. Attention is focused on the forest system in order to take into account sustainable silvicultural practices and on the minimization of costs for the collection plans over years. Specifically, a non linear optimization model (that includes forest growth models) is formalized, aiming at determining, over a certain period, the optimal exploitation policy of forest biomass through a single plant whose location and size are assumed known, in order to minimize costs and to respect silvicultural constraints. The decision model is solved through a receding horizon approach and is applied to the case study of Val Bormida (Savona Province, Italy). Different tests and sensitivity analysis have been performed to validate the model and the approach. From an application point of view, observing the obtained results, it is evident that results are strongly influenced by the old average age of the vegetation in the specific case study. However, depending on the species, different trends for the results of annual mean increment and harvesting plans are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Austin, J.M., Mackey, B.G., Van Niel, K.P.: Estimating forest biomass using satellite radar: an exploratory study in a temperate Australian Eucalyptus forest. For. Ecol. Manag. 176, 575–583 (2003)

    Article  Google Scholar 

  2. Rautiainen, A., Saikku, L., Kauppi, P.E.: Carbon gains and recovery from degradation of forest biomass in European Union during 1990–2005. For. Ecol. Manag. 259(8), 1232–1238 (2010)

    Article  Google Scholar 

  3. Bojić, S., Đatkov, D., Brcanov, D, Georgijević, M., Martinov, M.: Location, allocation of solid biomass power plants: Casestudy of Vojvodina. Renew. Sustain. Energy Rev. 26, 769–775 (2013)

  4. Shabani, N., Akhtari, S., Sowlati, T.: Value chain optimization of forest biomass for bioenergy production: a review. Renew. Sustain. Energy Rev. 23, 299–311 (2013)

    Article  Google Scholar 

  5. Diaz-Balteiro, L., Rodriguez, L.: Optimal rotations on Eucalyptus plantations including carbon sequestration—a comparison of results in Brazil and Spain. For. Ecol. Manag. 229, 247–258 (2006)

    Article  Google Scholar 

  6. Spring, D., Kennedy, J., Lindenmayer, D., McCarthy, M., Mac Nally, R.: Optimal management of flammable multi-stand forest for timber production and maintenance of nesting sites for wildlife. For. Ecol. Manag. 255, 3857–3865 (2008)

    Article  Google Scholar 

  7. Lohmander, P., Limaei, M.: Optimal continuous cover forest management in an uneven-aged forest in the North of Iran. J. Appl. Sci. 8, 1995–2007 (2008)

    Article  Google Scholar 

  8. Matthies, M., Giupponi, C., Ostendorf, B.: Environmental decision support systems: current issues, methods and tools. Environ. Model. Softw. 22(3), 123–127 (2007)

    Article  Google Scholar 

  9. Poch, M., Comas, J., Rodriguez Roda, I., Sanchez Marrè, M., Cortes, U.: Designing and building real environmental decision support systems. Environ. Model. Softw. 19(10), 857–873 (2004)

    Article  Google Scholar 

  10. Rizzoli, A.E., Young, W.J.: Delivering environmental decision support systems: software tools and techniques. Environ. Model. Softw. 12(2–3), 237–249 (1997)

    Article  Google Scholar 

  11. Denzer, R.: Generic integration ef environmental decision support systems-state of the art. Environ. Model. Softw. 20(11), 1217–1223 (2005)

    Article  Google Scholar 

  12. Berardi, A.: ASTROMOD: a computer program integrating vegetation dynamics modelling, environmental modelling and spatial data visualization in Microsoft Excel. Environ. Model. Softw. 17(5), 403–412 (2002)

    Article  Google Scholar 

  13. Chertov, O., Komarov, A., Andrienko, G., Andrienko, N., Gatalsky, P.: Integrating forest simulation models and spatial–temporal interactive visualisation for decision making at landscape level. Ecol. Model. 48(1), 47–65 (2002)

    Article  Google Scholar 

  14. Freppaz, D., Minciardi, R., Robba, M., Rovatti, M., Sacile, R., Taramasso, A.: Optimizing forest biomass exploitation for energy supply at a regional level. Biomass Bioenergy 26(1), 15–25 (2004)

    Article  Google Scholar 

  15. Frombo, F., Minciardi, R., Robba, M., Rosso, F., Sacile, R.: Planning woody biomass logistics for energy production: a strategic decision model. Biomass Bioenergy 33(4), 372–383 (2009)

    Article  Google Scholar 

  16. Frombo, F., Minciardi, R., Robba, M., Sacile, R.: A decision support system for planning biomass-based energy production. Energy 34(4), 362–369 (2009)

    Article  Google Scholar 

  17. Mitchell, C.P.: Development of decision support system for bioenergy applications. Biomass Bioenergy 18(5), 265–278 (2000)

    Article  Google Scholar 

  18. Newton, P.F.: A decision-support system for forest density management within upland black spruce stand-types. Environ. Model. Softw. 35, 171–187 (2012)

    Article  Google Scholar 

  19. Rauscher, H.M., Reynolds, K., Vacik, H.: Decision-support systems for forest management. Comput. Electron. Agric. 49(1), 1–5 (2005)

    Article  Google Scholar 

  20. Seely, B., Nelson, J., Wells, R., Peter, B., Meitner, M., Anderson, A., Harshaw, H., Sheppard, S., Bunnell, F.L., Kimmins, H., Harrison, D.: The application of a hierarchical, decision-support system to evaluate multi-objective forest management strategies: a case study in northeastern British Columbia, Canada. For. Ecol. Manag. 199(2–3), 283–305 (2004)

    Article  Google Scholar 

  21. Shao, G., Wang, H., Dai, L., Wu, G., Li, Y., Lang, R., Song, B.: Integrating stand and landscape decisions for multi-purposes of forest harvesting. For. Ecol. Manag. 207(1–2), 233–243 (2005)

    Article  Google Scholar 

  22. Van Dyken, S., Bakken, B.H., Skjelbred, H.I.: Linear mixed-integer models for biomass supply chains with transport, storage and processing. Energy 35(4), 1338–1350 (2010)

    Article  Google Scholar 

  23. Zambelli, P., Lora, C., Spinelli, R., Tattoni, C., Vitti, A., Zatelli, P., Ciolli, M.: A GIS decision support system for regional forest management to assess biomass availability for renewable energy production. Environ. Model. Softw. 38, 203–213 (2012)

    Article  Google Scholar 

  24. Zhang, F., Johnson, D.M., Sutherland, J.W.: A GIS-based method for identifying the optimal location for a facility to convert forest biomass to biofuel. Biomass Bioenergy 35(10), 3951–3961 (2011)

    Google Scholar 

  25. Dale, V.H., Doyle, T.W., Shugart, H.H.: A comparison of tree growth models. Ecol. Model. 29, 145–169 (1985)

    Article  Google Scholar 

  26. Kimmins, J.P., Blanco, J.A., Seely, B., Welham, C., Scoullar, K.: Complexity in modelling forest ecosystems: how much is enough? For. Ecol. Manag. 256(11), 1646–1658 (2008)

    Article  Google Scholar 

  27. Porté, A., Bartelink, H.H.: Modelling mixed forest growth: a review of models for forest management. Ecol. Model. 150(1–2), 141–188 (2002)

    Article  Google Scholar 

  28. Tiktak, A., Grinsven, H.J.M.: Review of sixteen forest-soil-atmosphere models. Ecol. Model. 83, 35–53 (1995)

    Article  Google Scholar 

  29. Battaglia, M., Sands, P.J., Candy, S.G.: Hybrid growth model to predict height and volume growth in young Eucalyptus globulus plantations. For. Ecol. Manag. 120, 193–201 (1999)

    Article  Google Scholar 

  30. Battaglia, M., Sands, P.J., White, D., Mummery, D.: CABALA: a linked carbon, water and nitrogen model of forest growth for silvicultural decision support. For. Ecol. Manag. 193(1–2), 251–282 (2004)

    Article  Google Scholar 

  31. Bermejo, I., Canellas, I., San Miguel, A.: Growth and yield models for teak plantations in Costa Rica. For. Ecol. Manag. 189, 97–110 (2004)

    Article  Google Scholar 

  32. Castellani, C.: Tavole stereometriche ed alsometriche costruite per i boschi italiani. Istituto Sperimentale per l’Assestamento Forestale e per l’Alpicoltura Raccolte, Trento (1982)

  33. Curtis, R.: Some Simulation Estimates of Mean Annual Increment of Douglas-Fir: Results, Limitations, and Implications for Management. United States Department of Agriculture, Forest Service, Research Paper PNW-RP-471, p. 33 (1994)

  34. Kirschbaum, M.U.F.: CenW, a forest growth model with linked carbon, energy, nutrient and water cycles. Ecol. Model. 118, 17–59 (1999)

    Article  Google Scholar 

  35. Lebaube, S., Le Goff, N., Ottorini, J.M., Graniera, A.: Carbon balance and tree growth in a Fagus sylvatica stand. Ann. For. Sci. 57, 49–61 (2000). (INRA, EDP Sciences)

  36. Mäkelä, A., Hari, P.: Stand growth model based on carbon uptake and allocation in individual trees. Ecol. Model. 33(2–4), 205–229 (1986)

    Article  Google Scholar 

  37. Peng, C., Liu, J., Dang, O., Apps, M.J., Jiang, H.: TRIPLEX: a generic hybrid model for predicting forest growth and carbon and nitrogen dynamics. Ecol. Model. 153(1–2), 109–130 (2002)

    Article  Google Scholar 

  38. Thürig, E., Palosuo, T., Bucher, J., Kaufmann, E.: The impact of windthrow on carbon sequestration in Switzerland: a model-based assessment. For. Ecol. Manag. 210, 337–350 (2005)

    Article  Google Scholar 

  39. Tuyl, S., Lawa, B.E., Turner, D.P., Gitelman, A.I.: Variability in net primary production and carbon storage in biomass across Oregon forests—an assessment integrating data from forest inventories, intensive sites, and remote sensing. For. Ecol. Manag. 209, 273–291 (2005)

    Article  Google Scholar 

  40. Wit, H.A., Palosuo, T., Hylen, G., Liski, J.: A carbon budget of forest biomass and soils in southeast Norway calculated using a widely applicable method. For. Ecol. Manag. 225(1–3), 15–26 (2006)

    Article  Google Scholar 

  41. Liski, J., Palosuo, T., Peltoniemi, M., Sievanen, R.: Carbon and decomposition model Yasso for forest soils. Ecol. Model. 189, 168–182 (2005)

    Article  Google Scholar 

  42. Masera, O.R., Garza-Calligaris, J.F., Kanninem, M., Karjalainen, T., Liski, J., Nabuurs, G.J., Pussien, A., De Jong, B.H.J., Mohren, G.M.J.: Modelling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V. 2 approach. Ecol. Model. 164, 177–199 (2003)

    Article  Google Scholar 

  43. Masera, O.R.: Carbon sequestration dynamics in forestry progect: the CO2FIX V. 2 model approach. Simposio internacional medicion y monitoreo de la captura de Carbono en ecosistems forestales, Valdivia Chile (2001)

  44. Nabuurs, G.J., Schelhaas, M.J.: Carbon profiles of typical forest types across Europe assessed with CO2FIX. Ecol. Indic. 1, 213–223 (2002)

    Article  Google Scholar 

  45. Routa, J., Kellomaki, S., Strandman, H.: Effects of forest management on total biomass production and CO\(_{2}\) emissions from use of energy biomass of Norway Spruce and Scots Pine. Bioenergy Res. 5(4), 733–747 (2012)

    Article  Google Scholar 

  46. Tian, S., Youssef, M., Skaggs, W., Amatya, D.M., Chescheir, G.M.: DRAINMOD-FOREST: integrated modeling of hydrology, soil carbon and nitrogen dynamics, and plant growth for drained forests. J. Environ. Qual. 41(4), 764–782 (2012)

    Article  Google Scholar 

  47. Hoen, F., Birger, S.: On valuation of global afforestation programs for carbon mitigation by Sten Nilsson. An editorial comment. Clim. Change 30(4), 259–266 (1995)

    Article  Google Scholar 

  48. Lasch, P., Badeck, F.W., Suckow, F., Lindner, M., Mohr, P.: Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). For. Ecol. Manag. 207(1–2), 59–74 (2005)

    Article  Google Scholar 

  49. Löwe, H., Seufert, G., Raes, F.: Comparison of methods used within Member States for estimating CO\(_{2}\) emissions and sinks according to UNFCCC and EU Monitoring Mechanism: forest and other wooded land. Biotechnol. Agron. Soc. Environ. 4(5), 315–319 (2000)

    Google Scholar 

  50. Cannell, M.G.R.: Carbon sequestration and biomass energy offset: theoretical, potential and achievable capacities globally, in Europe and the UK. Biomass Bioenergy 24, 97–116 (2003)

    Article  Google Scholar 

  51. Gadow, K., Hui, G.: Modelling Forest Development, 1st edn. Forestry Science. Springer, Netherlands (1999)

  52. Hasenauer, H. (ed.): Sustainable Forest Management: Growth Models for Europe. Springer, Berlin, Heidelberg (2006)

  53. Vanclay, J.: Modelling Forest Growth and Yield Applications to Mixed Tropical Forests, p. 329. CAB International, Wallingford. ISBN 0 85198 913 6 (2004)

  54. Forss, E., Gadow, K., Saborowski, J.: Growth nodels for unthinned Acacia mangium plantations in South Kalimantan, Indonesia. J. Trop. For. Sci. 8(5), 449–462 (1996)

    Google Scholar 

  55. Pienaar, L., Page, H., Rheney, J.W.: Yield prediction for mechanically site-preapered slash pine plantations. South. J. Appl. For. 14(4), 104–109 (1990)

    Google Scholar 

  56. Gasparini, P., Maltoni, M.L., Tabacchi, G.: Un modello a matrice di transizione per i boschi misti pluristratificati di Abete rosso, Abete bianco e Faggio, del Trentino. ISAFA Comunicazioni di ricerca (2000)

Download references

Acknowledgments

The work presented in this paper has been developed within a project funded by the Regional Program for Innovative Actions of the Liguria Region (PRAI-Liguria). The authors would like to thank the participants of PRAI-FESR project for collaboration in the Environmental Decision Support System development and for the use of available data relevant to Val Bormida case study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Robba.

Appendix

Appendix

1.1 Nomenclature

1.1.1 Sets

  • i, \(i=1,\ldots ,N\): index for forest parcels;

  • t, \(t=0,\ldots , T-1\): index for time;

1.1.2 Variables

  • \(Age_{i,t}\) (years): the average forest age for each forest parcel;

  • \(I_{i,t}\) (m\(^{3}\) ha\(^{-1}\) year\(^{-1}\)): the mean (i.e., averaged over space) annual volume increment (per unit area) in the time interval (t,\( t+1\));

  • \(u_{i,t}\) (m\(^{3}\) year\(^{-1}\)): the volume of biomass harvested or thinned during the same time interval on the whole parcel I;

  • \(v_{i,t}\) (m\(^{3}\)): the whole volume of biomass in parcel i at time t;

  • \(C_{FP}\): the cost of forest biomass felling and processing;

  • \(C_{FT}\): the cost of forest biomass primary transportation;

  • \(C_T\): the transportation cost from the landing points to the plant;

1.1.3 Parameters

  • \(a_{i }\) (m\(^{3}\) ha\(^{-1}\) year\(^{-3}\)), \(b_{i }\) (m\(^{3}\) ha\(^{-1}\) year\(^{-2}\)), \(c_{i}\) (m\(^{3}\) ha\(^{-1}\) year\(^{-1}\)): site- and species-specific parameters;

  • \(\bar{I}_i\) (m\(^{3}\) ha\(^{-1}\) year\(^{-1}\)): the biomass increment per unit area of the new planted trees;

  • \(S_i \) (ha): the overall area of the biomass parcel;

  • Age \(_{max,i, }\) (years): the age at which the mean annual increment attains its maximum;

  • \(I_{\max ,i} \) (m\(^{3}\) ha\(^{-1}\) year\(^{-1}\)): maximum mean annual increment;

  • \(C_U^{FP} \) (€ m\(^{-3}\)): unit cost for the felling and processing phase;

  • \(\sigma _{Deb,i} ,\sigma _{Del,i} ,\sigma _{Cc,i}\): binary parameters (Deb for debarking, Del for delimbing, and Cc for cross cutting, respectively);

  • \(P_{Deb} ,P_{Del} ,P_{Cc}\): the percentage of cost [%] saved when the corresponding operation is not needed;

  • \(C_{z,i}^{FT} \) (€ m\(^{-3}\)): unit cost for each slope z;

  • \(d_i^{FL} \) (km): distance from the felling areas to the nearest landing point;

  • \(Acc_{z,i}\): the percentage of surface area of parcel i characterized by slope class z [%];

  • \(d_{SP_i } \) (km): distance from landing point to the plant location;

  • \(C_U^T \) (€ kg\(^{-1}\) km\(^{-1}\)): unit cost for transport from landing point to the plant location;

  • \(VM_i \) (kg m\(^{-3}\)): biomass density;

  • \(\alpha _i \) (adim): parameter indicating the fraction of biomass that can be exploited (according to legislation);

  • CAP (MW): the fixed plant capacity;

  • \(\eta _1 , \eta _2\): coefficients of suitable value for energy production bounds;

  • f a conversion factor equal to the number of seconds in 1 year;

  • LHV \(_{i}\) (MJ/kg): the low heating value corresponding to the biomass in parcel i.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frombo, F., Minciardi, R., Robba, M. et al. A dynamic decision model for the optimal use of forest biomass for energy production. Energy Syst 7, 615–635 (2016). https://doi.org/10.1007/s12667-015-0188-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-015-0188-y

Keywords

Navigation