Advertisement

Energy Systems

, Volume 8, Issue 1, pp 81–101 | Cite as

Optimization techniques for the Brazilian natural gas network planning problem

  • Sergio V. B. Bruno
  • Leonardo A. M. Moraes
  • Welington de OliveiraEmail author
Original Paper

Abstract

This work reports on modeling and numerical experience in solving the long-term design and operation planning problem of the Brazilian natural gas network. The considered planning problem involves a large amount of money to be invested in production, imports, shipping and delivery of natural gas for several uses in Brazil. In order to account for uncertainties related to the gas demand, mainly due to the use of gas for power production, we model the network planning problem by adopting a two-stage stochastic linear programming approach. We calculate the value of incorporating stochasticity into the problem and assess its numerical tractability in a real-life case by applying optimal scenario reduction techniques and a decomposition strategy based on bundle methods.

Keywords

Stochastic programming OR in energy Natural gas Large scale optimization 

Notes

Acknowledgments

Research done during a postdoctoral visit of the third author at Instituto Nacional de Matemática Pura e Aplicada-IMPA. The authors are grateful to the reviewers for constructive suggestions that improved the original version of this article.

References

  1. 1.
    Birge, J.R., Louveaux, F.V.: Introduction to Stochastic Programming. Springer Series in Operations Research Series. Springer, London (1997)zbMATHGoogle Scholar
  2. 2.
    Bonnans, J., Gilbert, J., Lemaréchal, C., Sagastizábal, C.: Numerical Optimization: Theoretical and Practical Aspects, 2nd edn. Springer, New York (2006)zbMATHGoogle Scholar
  3. 3.
    Correa, R., Lemaréchal, C.: Convergence of some algorithms for convex minimization. Math. Program. 62(2), 261–275 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dupacová, J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic programming: an approach using probability metrics. Math. Program. 95, 493–511 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fábián, C., Szőke, Z.: Solving two-stage stochastic programming problems with level decomposition. Comput. Manag. Sci. 4, 313–353 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fábián, C.I.: Bundle-type methods for inexact data. In: Csendes T., Rapcsk T. (eds.) Proceedings of the XXIV Hungarian Operations Research Conference (Veszprém, 1999), vol. 8 (special issue), pp. 35–55 (2000)Google Scholar
  7. 7.
    Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. 24, 187–206 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Heitsch, H., Römisch, W.: Scenario tree reduction for multistage stochastic programs. Comput. Manag. Sci. 6, 117–133 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hellemo, L., Midthun, K., Tomasgard, A., Werner, A.: Multi-Stage Stochastic Programming for Natural Gas Infrastructure Design with a Production Perspective, chapter 10, pp. 259–288Google Scholar
  10. 10.
    Hellemo, L., Midthun, K., Tomasgard, A., Werner, A.: Natural gas infrastructure design with an operational perspective. Energy Proc. 26(0), 67–73 (2012). 2nd Trondheim Gas Technology ConferenceGoogle Scholar
  11. 11.
    Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. No. 305-306 in Grund. der math. Wiss. Springer (1993). (two volumes)Google Scholar
  12. 12.
    Kazempour, S., Conejo, A.: Strategic generation investment under uncertainty via benders decomposition. IEEE Trans. Power Syst. 27(1), 424–432 (2012)CrossRefGoogle Scholar
  13. 13.
    Kelley Jr, J.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8(4), 703–712 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kleywegt, A.J., Shapiro, A., Homem-de Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Li, X., Armagan, E., Tomasgard, A., Barton, P.I.: Long-term planning of natural gas production systems via a stochastic pooling problem. Am. Control Conf. (ACC) 2010, 429–435 (2010)Google Scholar
  16. 16.
    Li, X., Chen, Y., Barton, P.I.: Nonconvex generalized benders decomposition with piecewise convex relaxations for global optimization of integrated process design and operation problems. Ind. Eng. Chem. Res. 51(21), 7287–7299 (2012)CrossRefGoogle Scholar
  17. 17.
    Li, X., Tomasgard, A., Barton, P.: Nonconvex generalized benders decomposition for stochastic separable mixed-integer nonlinear programs. J. Optim. Theory Appl. 151, 425–454 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Maceira, M.E.P., Duarte, V.S., Penna, D.D.J., Moraes, L.A.M., Melo, A.C.G.: Ten years of application of stochastic dual dynamic programming in official and agent studies in Brazil: description of the NEWAVE program. Power Syst. Comput. Conf. 2008, 429–435 (2008)Google Scholar
  19. 19.
    Newham, N.: Power system investment planning using stochastic dual dynamic programming. Ph.D. thesis, University of Canterbury, New Zealand (2008). http://hdl.handle.net/10092/1975Google Scholar
  20. 20.
    de Oliveira, W., Sagastizábal, C.: Level bundle methods for oracles with on-demand accuracy. Optim. Methods Softw. 29(6), 1180–1209 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    de Oliveira, W., Sagastizábal, C., Lemaréchal, C.: Convex proximal bundle methods in depth: a unified analysis for inexact oracles. Math. Program. 148, 241–277 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    de Oliveira, W.L., Sagastizábal, C., Penna, D.D.J., Maceira, M.E.P.N., Damázio, J.M.: Optimal scenario tree reduction for stochastic streamflows in power generation planning problems. Optim. Methods Softw. 25(6), 917–936 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Pflug, G., Pichler, A.: A distance for multistage stochastic optimization models. SIAM J. Optim. 22(1), 1–23 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ruszczyński, A.: A regularized decomposition method for minimizing a sum of polyhedral functions. Math. Program. 35, 309–333 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sagastizábal, C.: Divide to conquer: decomposition methods for energy optimization. Math. Program. 134, 187–222 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Santoso, T., Ahmed, S., Goetschalckx, M., Shapiro, A.: A stochastic programming approach for supply chain network design under uncertainty. Eur. J. Oper. Res. 167(1), 96–115 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Schütz, P., Tomasgard, A., Ahmed, S.: Supply chain design under uncertainty using sample average approximation and dual decomposition. Eur. J. Oper. Res. 199(2), 409–419 (2009)CrossRefzbMATHGoogle Scholar
  28. 28.
    Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming. Modeling and Theory, MPS-SIAM series on optimization, vol. 9. SIAM and MPS, Philadelphia (2009)Google Scholar
  29. 29.
    Singh, K.J., Philpott, A.B., Wood, R.K.: Dantzig-Wolfe decomposition for solving multistage stochastic capacity-planning problems. Oper. Res. 57(5), 1271–1286 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Slyke, R.V., Wets, R.B.: L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17, 638–663 (1969)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sergio V. B. Bruno
    • 1
  • Leonardo A. M. Moraes
    • 1
  • Welington de Oliveira
    • 2
    Email author
  1. 1.PETROBRAS - Operations Research DepartmentRio de JaneiroBrazil
  2. 2.UERJ - Universidade do Estado do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations