Energy Systems

, Volume 7, Issue 3, pp 429–448 | Cite as

Nonlinear control of wind turbine with optimal power capture and load mitigation

Original Paper

Abstract

The main control objectives associated with the variable speed wind turbine is to extract maximum power at below rated wind speed (region 2) and to regulate the power at above rated wind speed (region 3). This paper proposes a nonlinear framework to achieve the above two control objectives. The paper discusses about the application of an integral sliding mode control (ISMC) in region 2 and a fuzzy based proportional integral (PI) control in region 3. Same ISMC is adopted for the stable switching between operating regions (transition region 2.5) and the control input maintains the continuity at the instant of switching. Lyapunov stability criterion is used to prove the stability of ISMC. The controllers are tested for different wind speed profiles with different turbulence component. Finally the performances of the proposed controllers are tested with nonlinear Fatigue, Aerodynamics, Structures, and Turbulence WT model and the results are compared with the existing baseline + PI controllers.

Keywords

Wind turbine Integral sliding mode control fuzzy PI control FAST 

References

  1. 1.
    Burton, T., et al.: Wind Energy Handbook. Wiley Publications, New York (2001)CrossRefGoogle Scholar
  2. 2.
    Bianchi, F.D., Battista, H.D., Mantz, R.J.: Wind turbine control systems: principles, modelling and gain scheduling design, 2nd edn. Springer, London (2006)Google Scholar
  3. 3.
    Yazhou, L., Alan, M., et al.: Modeling of the wind turbine with a doubly fed induction generator for grid integration studies. IEEE Trans. Energy Convers. 21(1), 257–264 (2011)Google Scholar
  4. 4.
    Song, Y.D., Dhinakaran, B., Bao, X.Y.: Variable speed control of wind turbines using nonlinear and adaptive algorithms. J. Wind Eng. Ind. Aerodyn. 85, 293–308 (2000)CrossRefGoogle Scholar
  5. 5.
    Mingfu, L., Dong, L., et al.: Study on rotational speed feedback torque control for wind turbine generator system. In: Proceedings of International conference on energy and environment technology, Oct., 2009, pp. 853–856Google Scholar
  6. 6.
    Mansour, S., Shahnazi, R., Yousefi, A.N.: An optimal fuzzy PI controller to capture the maximum power for variable speed wind turbines. J. Neural Comput. Appl. 23, 1359–1368 (2012)Google Scholar
  7. 7.
    Østergaard, K.Z., Brath, P., Stoustrup, J.: Estimation of effective wind speed. J. Phys.: Conf. Ser. 75, 1–9 (2007)Google Scholar
  8. 8.
    Boukhezzar, B., Siguerdidjane, H., Hand, M.: Nonlinear control of variable-speed wind turbines for generator torque limiting and power optimization. ASME J. Solar Energy Eng. 128, 516–530 (2006)CrossRefGoogle Scholar
  9. 9.
    Boukhezzar, B., Siguerdidjane, H.: Nonlinear control of a variable-speed wind turbine using a two-mass model. IEEE Trans. Energy Convers. 26(1), 149–162 (2011)CrossRefGoogle Scholar
  10. 10.
    Beltran, B., Ahmed-Ali, T., Benbouzid M.: High-order sliding-mode control of variable-speed wind turbines. IEEE Trans. Ind. Electron. 56(9), 3314–3321 (2009)Google Scholar
  11. 11.
    Khamlichi, A., et al.: Advanced control based on extended Kalman filter for variable speed wind turbine. Aust. J. Basic Appl. Sci. 5(9), 636–644 (2011)Google Scholar
  12. 12.
    Ćirić, I., et al.: Hybrid fuzzy control strategies for variable speed wind turbines. Facta Univ. Ser.: Autom. Control Robot. 10(2), 205–217 (2011)MathSciNetGoogle Scholar
  13. 13.
    Ronilson, R.: A sensorless control of variable speed wind turbine operating at partial load. Renew. Energy 36(1), 132–141 (2011)CrossRefGoogle Scholar
  14. 14.
    Xu, Z., Hu, Q., Mehrdad, E.: Estimation of effective wind speed for fixed-speed wind turbines based on frequency domain data fusion. IEEE Trans. Sustain. Energy 3(2), 57–64 (2012)Google Scholar
  15. 15.
    Boukhezzar, B., Lupu, L., et al.: Multivariable control strategy for variable speed, variable pitch wind turbines. Renew. Energy 32, 1273–1287 (2006)CrossRefGoogle Scholar
  16. 16.
    Rubio, J.O.M., Aguilar, L.T.: Maximizing the performance of variable speed wind turbine with nonlinear output feedback control. Procedia Eng. 35, 31–40 (2012)Google Scholar
  17. 17.
    Zhang, X., Xu, D., Liu, Y.: Intelligent control of a large variable speed wind turbine. J. Sol. Energy Eng. 134, 305–311 (2012)Google Scholar
  18. 18.
    Hamidreza, J., Jeff, P., Julian, E.: Adaptive control of a variable-speed variable-pitch wind turbine using radial-basis function neural network. IEEE Trans. Control Syst. Technol. 21(6), 2264–2272 (2013)CrossRefGoogle Scholar
  19. 19.
    Zhang, W., Hongze X.U.: Active disturbance rejection based pitch control of variable speed wind turbine. In: Proceedings of 30th Chinese control conference, 2011, pp. 5094–5098Google Scholar
  20. 20.
    Alshehri, A., Afef, F.: Pitch control design for optimum energy capture in variable-speed wind turbines. In: Proceedings of 2013 10th International Multi-Conference on Systems, Signals & Devices, 2013, pp. 1–6Google Scholar
  21. 21.
    Ahmet, S.Y., Zafer, Ö.: Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks. Expert Syst. Appl. 36, 9767–9775 (2009)CrossRefGoogle Scholar
  22. 22.
    Hamidreza, J., Jeff, P.: Gain scheduled \(\ell _1 \) optimal control for variable speed variable pitch wind turbines. IEEE Trans. Control Syst. Technol. 23(1), 372–379 (2015)CrossRefGoogle Scholar
  23. 23.
    Greg, S., Sigitas, R., Tuhin, D.: Nonlinear system analysis and control of variable speed wind turbine for multiregime operation. J. Dyn. Syst. Meas. Control 137, 1–10 (2015)Google Scholar
  24. 24.
    Bermudez, L., Velazquez, A., Matesanz, A.: Numerical simulation of unsteady aerodynamics effects in horizontal-axis wind turbines. J. Sol. Energy 68(1), 9–21 (2000)CrossRefGoogle Scholar
  25. 25.
    Kassem, A.M.: Modeling and control design of a stand alone wind energy conversion system based on functional model predictive control. Energy Syst. 3(3), 303–323 (2002)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Das, A.K.: An empirical model of power curve of a wind turbine. Energy Syst. 5(3), 507–518 (2014)CrossRefGoogle Scholar
  27. 27.
    NREL Report.: Wind turbine control design to reduce capital costs (2009)Google Scholar
  28. 28.
    Rsio-R Report.: Control design for a pitch regulated variable speed wind turbine (2005)Google Scholar
  29. 29.
    NREL Report.: Integrating wind turbine design (2006)Google Scholar
  30. 30.
    NREL Report.: Controls advanced research turbine (CART) commissioning and baseline data collection (2002)Google Scholar
  31. 31.
    Ottersten, O.: On control of back-to-back converters and sensor less induction machine drives. Ph.D. thesis, Chalmers Univ. Technol. (2003)Google Scholar
  32. 32.
    Pena, R., et al.: A cage induction generator using back to back PWM converters for variable speed grid connected wind energy systems. In: Proceedings of IECON 2001, pp. 1376–1381Google Scholar
  33. 33.
    NREL Report.: TurbSim User Guide (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational Institute of Technology KarnatakaSurathkalIndia

Personalised recommendations