Abstract
The recent emergence of distributed generation, smart meters, and electric vehicles means that much attention is now being given to network modelling and analysis at the distribution, rather than transmission, level. Many optimisation studies, both regarding technical and economic questions, aim to satisfy the constraints posed by grid infrastructure. We explore in detail one of these network constraints, minimum required voltage, at the distribution level and demonstrate that the physical locations of individual loads in the network play a significant role in determining whether voltages throughout the network remain within required limits or not. Our simulations use real distribution network data and are run on models of two real neighbourhoods. We show that the addition of a single load at a weak point of the network can have the same impact as considerably greater numbers of loads at stronger locations of the network. This has important implications for applications such as electric vehicle charging, and suggests that spatial distribution of loads should be taken into account when analysing network stability.
This is a preview of subscription content, access via your institution.












Notes
Australian standard 60038 sets voltage limits at customers’ point of connection to be 230 V +10 % /\(-\)6 %, in other words within (216 V, 253 V) [12].
References
Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., Galvan, E., Guisado, R.C.P.: Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans. Ind. Electron. 53(4), 1002–1016 (2006). (ISSN 0278-0046)
Weidlich, A., Vogt, H., Krauss, W., Spiess, P., Jawurek, M., Johns, M., Karnouskos, S.: Decentralized intelligence in energy efficient power systems. In: Sorokin, A., Rebennack, S., Pardalos, P.M., Iliadis, N.A., Pereira, M.V.F. (eds.) Handbook of Networks in Power Systems I, Energy Systems, pp. 467–486. Springer, Berlin, Heidelberg (2012). doi:10.1007/978-3-642-23193-3_18. (ISBN 978-3-642-23193-3)
Lopes, J.A.P., Soares, F.J., Almeida, P.M.R.: Integration of electric vehicles in the electric power system. Proc. IEEE 99(1), 168–183 (2011). doi:10.1109/JPROC.2010.2066250. (ISSN 0018-9219)
Clement-Nyns, K., Haesen, E., Driesen, J.: The impact of charging plug-in hybrid electric vehicles on a residential distribution grid. IEEE Trans. Power Syst. 25(1), 371–380 (2010). (ISSN 0885-8950)
Boulanger, A.G., Chu, A.C., Maxx, S., Waltz, D.L.: Vehicle electrification: status and issues. Proc. IEEE 99(6), 1116–1138 (2011). doi:10.1109/JPROC.2011.2112750. (ISSN 0018-9219)
Richardson, P., Flynn, D., Keane, A.: Optimal charging of electric vehicles in low-voltage distribution systems. IEEE Trans. Power Syst. 27(1), 268–279 (2012). doi:10.1109/TPWRS.2011.2158247. (ISSN 0885-8950)
de Hoog, J., Thomas, D.A., Muenzel, V., Jayasuriya, D.C., Alpcan, T., Brazil, M., Mareels, I.: Electric vehicle charging and grid constraints: comparing distributed and centralized approaches. In: Proceedings of the IEEE Power and Energy Society General Meeting. Vancouver, Canada (2013)
Ipakchi, A., Albuyeh, F.: Grid of the future. IEEE Power Energy Mag. 7(2), 52–62 (2009). (ISSN 1540-7977)
Kelly, L., Rowe, A., Wild, P.: Analyzing the impacts of plug-in electric vehicles on distribution networks in British Columbia. In: Transactions of the IEEE Electrical Power Energy Conference (EPEC), pp. 1–6. Montreal, Canada (2009). doi:10.1109/EPEC.2009.5420904
Pillai, J.R., Bak-Jensen, B.: Impacts of electric vehicle loads on power distribution systems. In: Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1–6 (2010). doi:10.1109/VPPC.2010.5729191
Pieltain Fernndez, L., Romn, T.G.S., Cossent, R., Domingo, C.M., Fras, P.: Assessment of the impact of plug-in electric vehicles on distribution networks. IEEE Trans. Power Syst. 26(1), 206–213 (2010). doi:10.1109/TPWRS.2010.2049133. (ISSN 0885-8950)
Australian Standard 60038: Standard voltages. http://www.standards.org.au. Accessed 10 Mar 2013
Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Canizares, C., Hatziargyriou, N., Hill, D., Stankovic, A., Taylor, C., Van Cutsem, T., Vittal, V.: Definition and classification of power system stability: IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans. Power Syst. 19(3), 1387–1401 (2004). (ISSN 0885-8950)
Ajjarapu, V., Lee, B.: Bibliography on voltage stability. IEEE Trans. Power Syst. 13(1), 115–125 (1998). (ISSN 0885-8950)
Ajjarapu, V., Christy, C.: The continuation power flow: a tool for steady state voltage stability analysis. IEEE Trans. Power Syst. 7(1), 416–423 (1992). (ISSN 0885-8950)
Flatabo, N., Ognedal, R., Carlsen, T.: Voltage stability condition in a power transmission system calculated by sensitivity methods. IEEE Trans. Power Syst. 5(4), 1286–1293 (1990). (ISSN 0885-8950)
Gao, B., Morison, G.K., Kundur, P.: Voltage stability evaluation using modal analysis. IEEE Trans. Power Syst. 7(4), 1529–1542 (1992). (ISSN 0885-8950)
Jasmon, G.B., Lee, L.H.C.C.: Distribution network reduction for voltage stability analysis and loadflow calculations. Int. J. Electr. Power Energy Syst. 13(1), 9–13 (1991)
Gubina, F., Strmcnik, B.: A simple approach to voltage stability assessment in radial networks. IEEE Trans. Power Syst. 12(3), 1121–1128 (1997). (ISSN 0885-8950)
Chakravorty, M., Das, D.: Voltage stability analysis of radial distribution networks. Int. J. Electr. Power Energy Syst. 23(2), 129–135 (2001). (ISSN 0142-0615)
Eminoglu, U., Hocaoglu, M.H.: A voltage stability index for radial distribution networks. In: Transactions of the Universities Power Engineering Conference, pp. 408–413 (2007)
Juanuwattanakul, P., Masoum, M.A.S.: Voltage stability enhancement for unbalanced multiphase distribution networks. In: Transactions of the IEEE Power and Energy Society General Meeting, pp. 1–6 (2011). doi:10.1109/PES.2011.6039044. (ISSN 1944–9925)
Reis, C., Maciel Barbosa, F.P.: A comparison of voltage stability indices. In: Proceedings of IEEE MELECON, Benalmadena (2006)
Juanuwattanakul, P., Masoum, M.A.S.: Identification of the weakest buses in unbalanced multiphase smart grids with plug-in electric vehicle charging stations. In: Innovative Smart Grid Technologies Asia (ISGT), 2011 IEEE PES, pp. 1–5 (2011). doi:10.1109/ISGT-Asia.6167155
Victorian Integrated Survey of Travel and Activity: http://www.transport.vic.gov.au/research/statistics/victorian-integrated-survey-of-travel-and-activity. Accessed 10 Mar 2013 (2009)
Kuhn, B.T., Pitel, G.E., Krein, P.T.: Electrical properties and equalization of lithium-ion cells in automotive applications. In: Transactions of the IEEE Vehicle Power and Propulsion Conference. Chicago, USA (2005). doi:10.1109/VPPC.2005.1554532
Willis, H. Lee.: Spatial Electric Load Forecasting. CRC Press, New York, USA (2002)
Mithulananthan, N., Salama, M.M.A., Canizares, C.A., Reeve, J.: Distribution system voltage regulation and var compensation for different static load models. Int. J. Electr. Eng. Educ. 37(4), 384–395 (2000)
Acknowledgments
This work has been funded by a Linkage Grant supported by the Australian Research Council, Better Place Australia, and Senergy Australia. We are grateful to United Energy and Ergon Energy for providing data and assistance.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
de Hoog, J., Muenzel, V., Jayasuriya, D.C. et al. The importance of spatial distribution when analysing the impact of electric vehicles on voltage stability in distribution networks. Energy Syst 6, 63–84 (2015). https://doi.org/10.1007/s12667-014-0122-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12667-014-0122-8