Mathematical optimization for challenging network planning problems in unbundled liberalized gas markets

Abstract

The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor were united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We discuss how these changing paradigms lead to new and challenging mathematical optimization problems. This includes the validation of nominations, that asks for the decision if the network’s capacity is sufficient to transport a specific amount of flow, the verification of booked capacities and the detection of available freely allocable capacities, and the topological extension of the network with new pipelines or compressors in order to increase its capacity. In order to solve each of these problems and to provide meaningful results for the practice, a mixture of different mathematical aspects have to be addressed, such as combinatorics, stochasticity, uncertainty, and nonlinearity. Currently, no numerical solver is available that can deal with such blended problems out-of-the-box. The main goal of our research is to develop such a solver, that moreover is able to solve instances of realistic size. In this article, we describe the main ingredients of our prototypical software implementations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. 2.

    André, J., Bonnans, F., Cornibert, L.: Optimization of capacity expansion planning for gas transportation networks. Eur. J. Oper. Res. 197(3), 1019–1027 (2009)

    Google Scholar 

  3. 3.

    Babonneau, F., Nesterov, Y., Vial, J.-P.: Design and operations of gas transmission networks. Oper. Res. 60(1), 34–47 (2012)

    Google Scholar 

  4. 4.

    Arne Stolbjerg Drud. CONOPT—a large-scale GRG code. INFORMS J. Comput. 6(2), 207–216 (1994)

    Google Scholar 

  5. 5.

    Baumrucker, B.T., Biegler, L.T.: MPEC strategies for cost optimization of pipeline operations. Comput. Chem. Eng. 34(6), 900–913 (2010)

    Article  Google Scholar 

  6. 6.

    Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Opt. Methods Softw. 24(4–5), 597–634 (2009)

    Article  MATH  Google Scholar 

  7. 7.

    Ben-Tal, Aharon, El Ghaoui, Laurent, Nemirovski, Arkadi: Robust Optimization, Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2009)

    Google Scholar 

  8. 8.

    Benedetti, M., Lallouet, A., Vautard, J.: Quantified constraint optimization. In CP, Lecture Notes in Computer Science, pp. 463–477. Springer, Berlin (2008)

  9. 9.

    Berthold, T., Heinz, S., Vigerske, S.: Extending a CIP framework to solve MIQCPs. In: Lee, J., Leyffer, A. (eds.) Mixed Integer Nonlinear Programming, volume 154, part 6 of The IMA Volumes in Mathematics and its Applications, pp. 427–444. Springer, New York (2012) (also available as ZIB-Report 09–23)

  10. 10.

    Bixby, R.E.: Solving real-world linear programs: a decade and more of progress. Oper. Res. 50(1), 1–13 (2002)

    Google Scholar 

  11. 11.

    Borráz-Sánchez, C., Ríos-Mercado, R.Z.: A non-sequential dynamic programming approach for natural gas network optimization. WSEAS Trans. Syst. 3, 1384–1389 (2004)

    Google Scholar 

  12. 12.

    Byrd, R., Nocedal, J., Waltz, R.: Knitro: an integrated package for nonlinear optimization. In: Pillo, G., Roma, M., Pardalos, P. (eds.) Large-Scale Nonlinear Optimization, volume 83 of Nonconvex Optimization and Its Applications, pp. 35–59. Springer, New York (2006)

  13. 13.

    CPLEX. User’s Manual for CPLEX. IBM Corporation, Armonk, 12.4 edition (2011)

  14. 14.

    De Wolf, D., Bakhouya, B.: The gas transmission problem when the merchant and the transport functions are disconnected. Technical Report 01/01, Ieseg, Université catholique de Lille, HEC Ecole de Gestion de l’ULG (2007)

  15. 15.

    de Wolf, D., Smeers, Y.: Optimal dimensioning of pipe networks with application to gas transmission networks. Oper. Res. 44(4), 596–608 (July 1996)

    Google Scholar 

  16. 16.

    DeMiguel, A.-V., Friedlander, M.P., Nogales, F.J., Scholtes, S.: A two-sided relaxation scheme for mathematical programs with equilibrium constraints. SIAM J. Optim. 16(1), 587–609 (2005)

    Google Scholar 

  17. 17.

    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  18. 18.

    Egging, R.G., Gabriel, S.A.: Examining market power in the European natural gas market. Energy Policy 34(17), 2762–2778 (2006)

    Google Scholar 

  19. 19.

    Ehrhardt, K., Steinbach, M.C.: Nonlinear optimization in gas networks. In: Bock, H.G., Kostina, E., Phu, H.X., Ranacher, R. (eds.) Modeling, Simulation and Optimization of Complex Processes, pp. 139–148. Springer, Berlin (2005)

  20. 20.

    Ellis, A., Bowitz, E., Roland, K.: Structural change in Europe’s gas markets: three scenarios for the development of the European gas market to 2020. Energy Policy 28, 297–309 (2000)

    Google Scholar 

  21. 21.

    European Parliament and Council of the European Union. Directive 2003/55/EC of the European Parliament and of the Council of 26 June 2003 concerning common rules for the internal market in natural gas and repealing Directive 98/30/EC. Offic. J. of Europ. Union, pp. L 176, 57–78 (2003)

  22. 22.

    Feistauer, M.: Mathematical methods in fluid dynamics, volume 67 of Pitman Monographs and Surveys in Pure and Applied Mathematics Series. Longman Scientific & Technical, Harlow (1993)

  23. 23.

    Finnemore, E.J., Franzini, J.E.: Fluid Mechanics with Engineering Applications, 10 th edn. McGraw-Hill (2002)

  24. 24.

    Friedl, H., Mirkov, R., Steinkamp, A.: Modeling and forecasting gas flow on exits of gas transmission networks. Int. Stat. Rev. 80(1), 24–39 (2012)

    Article  MathSciNet  Google Scholar 

  25. 25.

    Fügenschuh, A, Hiller, B., Humpola, J., Koch, T., Lehman, T., Schwarz, R., Schweiger, J., Szabó, J.: Gas network topology optimization for upcoming market requirements. IEEE Proc. 8th Intern. Conf. on EEM 2011, pp. 346–351 (2011)

  26. 26.

    Furey, B.P.: A sequential quadratic programming-based algorithm for optimization of gas networks. Automatica 29(6), 1439–1450 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. 27.

    Geißler, B.: Towards globally optimal solutions for MINLPs by discretization techniques with applications in gas network optimization. PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2011)

  28. 28.

    Geißler, B., Martin, A., Morsi, A., Schewe, L.: Using piecewise linear functions for solving MINLPs. In: Lee, J., Leyffer, A. (eds.) Mixed Integer Nonlinear Programming, volume 154 of The IMA Volumes in Mathematics and its Applications, pp. 287–314. Springer, New York (2012)

  29. 29.

    Gilmour, B.J., Luongo, C.A., Schroeder, D.W.: Optimization in Natural Gas Transmission Networks: A Tool to Improve Operational Efficiency, vol. 4. Technical report, Stoner Associates Inc. (1989)

  30. 30.

    Gu, Z., Rothberg, E., Bixby, R.: Gurobi Optimizer Reference Manual, Version 5.0. Gurobi Optimization Inc., Houston (2012)

  31. 31.

    Hamam, Y.M., Brameller, A.: Hybrid method for the solution of piping networks. Proc. Inst. Electr. Eng. 118(11), 1607–1612 (1971)

    Article  Google Scholar 

  32. 32.

    Hansen, C.T., Madsen, K., Nielsen, H.B.: Optimization of pipe networks. Math. Program. 52(1–3), 45–58 (1991)

    Google Scholar 

  33. 33.

    Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. 24, 187–206 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. 34.

    Heren, P.: Removing the government from European gas. Energy Policy 27, 3–8 (1999)

    Google Scholar 

  35. 35.

    Holz, F., von Hirschhausen, C., Kemfert, C.: Perspectives of the European natural gas markets until 2025. Energy J. 30, 137–150 (2009)

    Google Scholar 

  36. 36.

    Hu, X.M., Ralph, D.: Convergence of a penalty method for mathematical programming with complementarity constraints. J. Optim. Theory Appl. 123, 365–390 (2004)

    Google Scholar 

  37. 37.

    Jeníček, T.: Steady-state optimization of gas transport. In: SIMONE: [56], pp. 26–38

  38. 38.

    Koch, T., Leövey, H., Mirkov, R., Römisch, W., Wegner-Specht, I.: Szenariogenerierung zur Modellierung der stochastischen Ausspeiselasten in einem Gastransportnetz. VDI-Berichte: Opt. i. d. Energiewirt. 2157, 115–125 (2011)

  39. 39.

    Kráik, J.: Compressor stations in SIMONE. In: SIMONE [56], pp. 93–117

  40. 40.

    Lall, H., Percell, P.: A dynamic programming based Gas Pipeline Optimizer. In: Bensoussan, A., Lions, J. (eds.) Analysis and Optimization of Systems, volume 144 of Lecture Notes in Control and Information Sciences, pp. 123–132. Springer, New York (1990)

  41. 41.

    Li, C., Jia, W., Yang, Y., Wu, X.: Adaptive genetic algorithm for steady-state operation optimization in natural gas networks. J. Softw. 6, 452–459 (2011)

    Google Scholar 

  42. 42.

    Lorenz, U., Martin, A., Wolf, J.: Polyhedral and algorithmic properties of quantified Linear Programs. In: Algorithms—ESA, volume 6346 of Lecture Notes in Computer Science, pp. 512–523 (2010)

  43. 43.

    Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical programs with equilibrium constraints. Cambridge University Press, Cambridge (1996)

  44. 44.

    Lurie, M.V.: Modeling of Oil Product and Gas Pipeline Transportation. Wiley-VCH, Weinheim (2008)

  45. 45.

    Mahlke, D., Martin, A., Moritz, S.: A simulated annealing algorithm for transient optimization in gas networks. Math. Methods Oper. Res. 66(1), 99–116 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  46. 46.

    Mahlke, D., Martin, A., Moritz, S.: A mixed integer approach for time-dependent gas network optimization. Opt. Methods Softw. 25(4), 625–644 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  47. 47.

    Mallinson, J., Fincham, A.E., Bull, S.P., Rollet, J.S., Wong, M.L.: Methods for optimizing gas transmission networks. Ann. Oper. Res. 43, 443–454 (1993)

    Article  MATH  Google Scholar 

  48. 48.

    Markowitz, H.M., Manne, A.S.: On the solution of discrete programming problems. Econometrica 25, 84–110 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  49. 49.

    Martin, A., Möller, M., Moritz, S.: Mixed integer models for the stationary case of gas network optimization. Math. Program. 105(2), 563–582 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  50. 50.

    Meeus, Leonardo, Purchala, Konrad, Belmans, Ronnie: Development of the internal electricity market in Europe. Electr. J. 18(6), 25–35 (2005)

    Article  Google Scholar 

  51. 51.

    Modisette, J.L.: Equation of state tutorial. Technical Report 0008, PSIG—Pipeline Simulation Interest, Group (2000)

  52. 52.

    Möller, M.: Mixed Integer Models for the Optimisation of Gas Networks in the Stationary Case. PhD thesis, Technische Universität Darmstadt, Fachbereich Mathematik (2004)

  53. 53.

    Moritz, S.: A Mixed Integer Approach for the Transient Case of Gas Network Optimization. PhD thesis, Technische Universität Darmstadt, Fachbereich Mathematik (2006)

  54. 54.

    Percebois, J.: The gas deregulation process in Europe: economic and political approach. Energy Policy 27, 9–15 (1999)

    Google Scholar 

  55. 55.

    Pfetsch, M.E., Geißler, A.B., Geißler, N., Gollmer, R., Hiller, B., Humpola, J., Koch, T., Lehmann, T., Martin, A., Morsi, A., Rövekamp, J., Schewe, L., Schmidt, M., Schultz, R., Schwarz, R., Schweiger, J., Stangl, C., Steinbach, M.C., Vigerske, S., Willert, B.M.: Validation of nominations in gas network optimization: Models, methods, and solutions. ZIB-Report 12–41, Zuse Institute Berlin, Berlin (2012)

  56. 56.

    Proceedings of 2nd International Workshop SIMONE on Innovative Approaches to Modeling and Optimal Control of Large Scale Pipeline Networks, vol. 9, Prague (1993)

  57. 57.

    Prékopa, A., Stochastic Programming. Kluwer Academic Publishers, Dordrecht (1995)

  58. 58.

    Radetzki, M.: European natural gas: market forces will bring about competition in any case. Energy Policy 27, 17–24 (1999)

    Google Scholar 

  59. 59.

    Ríos-Mercado, R.Z., Wu, S., Scott, L.R., Boyd, E.A.: A reduction technique for natural gas transmission network optimization problems. Ann. Oper. Res. 117(1), 217–234 (2002)

    Article  MATH  Google Scholar 

  60. 60.

    Schmidt, M.: A Generic Interior-Point Framework for Nonsmooth and Complementarity Constrained Nonlinear Optimization. PhD thesis, Gottfried Wilhelm Leibniz Universität Hannover (2013)

  61. 61.

    Schmidt, M., Steinbach, M.C., Willert, B.M.: High detail stationary optimization models for gas networks—part 1: model components. IfAM Preprint 94, Inst. of Applied Mathematics, Leibniz Universität Hannover (2012, submitted)

  62. 62.

    Schmidt, M., Steinbach, M.C., Willert, B.M.: A primal heuristic for nonsmooth mixed integer nonlinear optimization. IfAM Preprint 95, Inst. of Applied Mathematics, Leibniz Universität Hannover (2012, submitted)

  63. 63.

    Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11(4), 918–936 (2001)

    Google Scholar 

  64. 64.

    Smith, E.M.B., Pantelides, C.C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimization of nonconvex MINLPs. Comput. Chem. Eng. 23, 457–478 (1999)

    Article  Google Scholar 

  65. 65.

    Steinbach, M.C.: On PDE solution in transient optimization of gas networks. J. Comput. Appl. Math. 203(2), 345–361 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  66. 66.

    Subramani, K.: On a decision procedure for quantified linear programs. Ann. Math. Artif. Intell. 51(1), 55–77 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  67. 67.

    Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer Academic Publishers, Dordrecht (2002)

  68. 68.

    Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  69. 69.

    Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  70. 70.

    Vigerske, S.: Decomposition in Multistage Stochastic Programming and a Constraint Integer Programming Approach to Mixed-Integer Nonlinear Programming. PhD thesis, Humboldt-Universität zu Berlin (2012)

  71. 71.

    Verordnung über den Zugang zu Gasversorgungsnetzen (Gasnetzzugangsverordnung-GasNZV) (2005)

  72. 72.

    Vostrý, Z.: Transient optimization of gas transport and distribution. In: SIMONE [56], pp. 53–62

  73. 73.

    Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  74. 74.

    Waverman, Leonard, Sirel, Esen: European telecommunications markets on the verge of full liberalization. J. Econ. Perspect. 11(4), 113–126 (1997)

    Article  Google Scholar 

  75. 75.

    Weymouth, T.R.: Problems in natural gas engineering. Trans. Am. Soc. Mech. Eng. 34, 185–231 (1912)

    Google Scholar 

  76. 76.

    Wong, P.J., Larson, R.E.: Optimization of natural-gas pipeline systems via dynamic programming. IEEE Trans. Autom. Control 15(5), 475–481 (1968)

    Article  Google Scholar 

  77. 77.

    Wright, S., Somani, M., Ditzel, C.: Compressor station optimization. Technical Report PSIG 9805, Pipeline Simulation Interest Group (1998)

  78. 78.

    Zhang, J., Zhu, D.: A bilevel programming method for pipe network optimization. SIAM J. Optim. 6(3), 838–857 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  79. 79.

    Zheng, Q.P., Rebennack, S., Iliadis, N.A., Pardalos, P.M.: Optimization models in the natural gas industry. In: Handbook of Power Systems I, pp. 121–148. Springer, New York (2010)

  80. 80.

    Zimmer, H.I.: Calculating Optimum Pipeline Operations. Technical Report SAND2009-5066C, El Paso Natural Gas Company (1975)

Download references

Acknowledgments

Our work is supported by Open Grid Europe GmbH (OGE), which operates the former E.ON/Ruhrgas network. OGE provided real-world problem data which we used to develop models and algorithms. Armin Fügenschuh conducted parts of this research under a Konrad Zuse Junior Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Armin Fügenschuh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fügenschuh, A., Geißler, B., Gollmer, R. et al. Mathematical optimization for challenging network planning problems in unbundled liberalized gas markets. Energy Syst 5, 449–473 (2014). https://doi.org/10.1007/s12667-013-0099-8

Download citation

Keywords

  • Gas market liberalization
  • Entry–exit model
  • Gas network access regulation
  • Mixed-integer nonlinear nonconvex stochastic optimization

Mathematics Subject Classification (2000)

  • 90B10
  • 90C11
  • 90C30
  • 90C90