Modeling and solving a large-scale generation expansion planning problem under uncertainty

Abstract

We formulate a generation expansion planning problem to determine the type and quantity of power plants to be constructed over each year of an extended planning horizon, considering uncertainty regarding future demand and fuel prices. Our model is expressed as a two-stage stochastic mixed-integer program, which we use to compute solutions independently minimizing the expected cost and the Conditional Value-at-Risk; i.e., the risk of significantly larger-than-expected operational costs. We introduce stochastic process models to capture demand and fuel price uncertainty, which are in turn used to generate trees that accurately represent the uncertainty space. Using a realistic problem instance based on the Midwest US, we explore two fundamental, unexplored issues that arise when solving any stochastic generation expansion model. First, we introduce and discuss the use of an algorithm for computing confidence intervals on obtained solution costs, to account for the fact that a finite sample of scenarios was used to obtain a particular solution. Second, we analyze the nature of solutions obtained under different parameterizations of this method, to assess whether the recommended solutions themselves are invariant to changes in costs. The issues are critical for decision makers who seek truly robust recommendations for generation expansion planning.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Ahmed, S.: Introduction to stochastic integer programming. http://www.stoprog.org/SPIntro/intro2sip.html (2009)

  2. 2.

    Ahmed, S., Sahinidis, N.: An approximation scheme for stochastic integer programs arising in capacity expansion. Oper. Res. 51(3), 461–471 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Ahmed, S., King, A., Parija, G.: A multi-stage stochastic integer programming approach for capacity expansion under uncertainty. J. Glob. Optim. 26, 3–24 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Albornoz, V., Benario, P., Rojas, M.: A two-stage stochastic integer programming model for a thermal power system expansion. Int. Trans. Oper. Res. 11, 243–257 (2004)

    MATH  Article  Google Scholar 

  5. 5.

    AMPL: A modeling language for mathematical programming. http://www.ampl.com (2010)

  6. 6.

    Anderson, T.: An Introduction to Multivariate Statistical Analysis, 3rd edn. Wiley, New York (2003)

    Google Scholar 

  7. 7.

    Annual Energy Outlook 2009: Tech. rep., Energy Information Administration, Department of Energy (2009)

  8. 8.

    Booth, R.: Optimal generation planning considering uncertainty. IEEE Trans. Power Appar. Syst. PAS-91, 70–77 (1972)

    Article  Google Scholar 

  9. 9.

    Chuang, A., Wu, F., Varaiya, P.: A game-theoretic model for generation expansion planning: problem formulation and numerical comparisons. IEEE Trans. Power Syst. 16(4), 885–891 (2001)

    Article  Google Scholar 

  10. 10.

    COIN-OR: COmputational INfrastructure for Operations Research. http://www.coin-or.org (2010)

  11. 11.

    CPLEX: http://www.cplex.com (2010)

  12. 12.

    DeMeo, E., Grant, W., Milligan, M., Schuerger, M.: Wind plant generation. IEEE Power Energy Mag. 3(6), 38–46 (2005)

    Article  Google Scholar 

  13. 13.

    Denny, E., O’Malley, M.: Wind generation power system operation, and emissions reduction. IEEE Trans. Power Syst. 21(1), 341–347 (2006)

    Article  Google Scholar 

  14. 14.

    Dentcheva, D., Romisch, W.: Optimal power generation under uncertainty via stochastic programming. Stoch. Program. Methods Tech. Appl., pp. 22–56 (1998)

  15. 15.

    Doherty, R., Outhred, H., O’Malley, M.: Establishing the role that wind generation may have in future generation portfolios. IEEE Trans. Power Syst. 21(3), 1415–1422 (2006)

    Article  Google Scholar 

  16. 16.

    Dupacova, J., Consigli, G., Wallace, S.: Scenarios for multistage stochastic programs. Ann. Oper. Res. 100, 25–53 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Eichhorn, A., Heitsch, H., Romisch, W.: Stochastic optimization of electricity portfolios: scenario tree modeling and risk management. In: Rebennack, S., Pardalos, P., Pereira, M., Iliadis, N. (eds.) Handbook of Power Systems, vol. II, pp. 405–432. Springer, Berlin (2010)

    Google Scholar 

  18. 18.

    Electric Generation Expansion Analysis System (EGEAS): Tech. rep., Electric Power Research Institute (2009)

  19. 19.

    Firmo, H., Legey, L.: Generation expansion planning: an iterative genetic algorithm approach. IEEE Trans. Power Syst. 17(3), 901–906 (2002)

    Article  Google Scholar 

  20. 20.

    Fukuyama, Y., Chiang, H.: A parallel genetic algorithm for generation expansion planning. IEEE Trans. Power Syst. 11(2), 955–961 (1996)

    Article  Google Scholar 

  21. 21.

    Garcia-Gonzalez, J., de la Muela, R., Santos, L., Gonzalez, A.: Stochastic joint optimization of wind generation and pumped-storage units in an electricity market. IEEE Trans. Power Syst. 23(2), 460–468 (2008)

    Article  Google Scholar 

  22. 22.

    Growe-Kruska, N., Heitsch, H., Romisch, W.: Scenario reduction and scenario tree construction for power management problems. In: IEEE Bologna Power Tech. Conference, Bologna, Italy (2003)

    Google Scholar 

  23. 23.

    Holmes, D.: A collection of stochastic programming problems. Tech. rep. (1994)

  24. 24.

    Høyland, K., Wallace, S.: Generating scenario tree for multistage decision problems. Manag. Sci. 47(2), 295–307 (2001)

    Article  Google Scholar 

  25. 25.

    http://www.eia.doe.gov/international (2009)

  26. 26.

    http://www.eia.doe.gov/cneaf/electricity/epm/table1_1.html (2009)

  27. 27.

    http://en.wikipedia.org/wiki/Clean_coal#Clean_coal_technology (2009)

  28. 28.

    http://en.wikipedia.org/wiki/Renewable_energy_development#Production_tax_credits (2009)

  29. 29.

    http://www.eia.doe.gov/cneaf/electricity/epm/table1_1.html (2009)

  30. 30.

    http://www.gesys.com/pro-mod.htm (2009)

  31. 31.

    http://www.plexos.info/wiki (2009)

  32. 32.

    http://www.plexossolutions.com (2009)

  33. 33.

    http://en.wikipedia.org/wiki/Geometric_Brownian_motion (2009)

  34. 34.

    http://www.midwestmarket.org (2009)

  35. 35.

    International Energy Outlook 2009: Tech. rep., Energy Information Administration, Department of Energy (2009)

  36. 36.

    Johnson, N., Kotz, S.: Continuous Univariate Distributions, 2nd edn. Wiley Series in Probability and Mathematical Statistics, vol. 1. Wiley, New York (1994). Chap. 3: Lognormal distribution

    Google Scholar 

  37. 37.

    Joint Coordinated System Planning Report 2008: Tech. rep. (2009)

  38. 38.

    Kanna, S., Slochanal, S., Padhy, N.: Application and comparison of metaheuristic techniques to generation expansion planning problem. IEEE Trans. Power Syst. 20(1), 466–475 (2005)

    Article  Google Scholar 

  39. 39.

    Karaki, S., Chaaban, F., Al-Nakhl, N., Tarhini, K.: Power generation expansion planning with environmental consideration for Lebanon. Int. J. Electr. Power Energy Syst. 24, 611–619 (2002)

    Article  Google Scholar 

  40. 40.

    Karki, R., Billinton, R.: Cost-effective wind energy utilization for reliable power supply. IEEE Trans. Energy Convers. 19(2), 435–440 (2004)

    Article  Google Scholar 

  41. 41.

    Laurent, A.: A scenario generation algorithm for multistage stochastic programming: application for asset allocation models with derivatives. Ph.D. thesis, University of Lugano, Lugano, Switzerland (2006)

  42. 42.

    Lund, H.: Large-scale integration of wind power into different energy systems. Energy 30(13), 2402–2412 (2005)

    Article  Google Scholar 

  43. 43.

    Mahalanobis, P.: On the generalised distance in statistics. In: Proceedings of the National Institute of Sciences of India, vol. 2, pp. 49–55 (1936)

    Google Scholar 

  44. 44.

    Mak, W., Morton, D., Wood, R.: Monte Carlo bounding techniques for determining solution quality in stochastic programs. Oper. Res. Lett. 24, 47–56 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Malcolm, S., Zenios, S.: Robust optimization for power systems capacity expansion under uncertainty. J. Oper. Res. Soc. 45(9), 1040–1049 (1994)

    MATH  Google Scholar 

  46. 46.

    Marathe, R., Ryan, S.: On the validity of the geometric Brownian motion assumption. Eng. Econ. 50(2), 159–192 (2005)

    Article  Google Scholar 

  47. 47.

    McCalley, J.: Introduction to electric systems expansion planning. http://home.eng.iastate.edu/~jdm/ee590/PlanningIntro.pdf (2008)

  48. 48.

    McLachlan, G.: Discriminant Analysis and Statistical Pattern Recognition. Wiley Interscience, New York (1992)

    Google Scholar 

  49. 49.

    Meza, J., Yildirim, M., Masud, A.: A model for the multiperiod multiobjective power generation expansion problem. IEEE Trans. Power Syst. 22(2) (2007)

  50. 50.

    Milligan, M.: Measuring wind plant capacity value. Tech. rep., National Renewable Energy Laboratory, Colorado (1996)

  51. 51.

    Milligan, M.: Variance estimates of wind plant capacity credit. Tech. rep., National Renewable Energy Laboratory, Colorado (1996)

  52. 52.

    Milligan, M.: Modeling utility-scale wind power plants. Part 2: Capacity credit. Wind Energy 3, 106–206 (2000)

    Article  Google Scholar 

  53. 53.

    Mo, B., Hegge, J., Wangensteen, I.: Stochastic generation expansion planning by means of stochastic dynamic programming. IEEE Trans. Power Syst. 6(2), 662–668 (1991)

    Article  Google Scholar 

  54. 54.

    Mulvey, J., Vanderbei, R., Zenios, S.: Robust optimization of large-scale systems. Oper. Res. 43(2), 264–281 (1995)

    MathSciNet  MATH  Article  Google Scholar 

  55. 55.

    Paulun, T., Haubrich, H.J.: Long-term and expansion planning for electrical networks considering uncertainties. In: Rebennack, S., Pardalos, P., Pereira, M., Iliadis, N. (eds.) Handbook of Power Systems, vol. I, pp. 391–408. Springer, Berlin (2010)

    Google Scholar 

  56. 56.

    PySP: PySP: Python-based stochastic programming. https://software.sandia.gov/trac/coopr/wiki/PySP (2011)

  57. 57.

    Rockafellar, R.: Coherent approaches to risk in optimization under uncertainty. In: Tutorials in Operation Research. INFORMS Annual Meeting (2007)

    Google Scholar 

  58. 58.

    Rockafellar, R., Uryasev, S.: Optimization of Conditional Value-at-Risk. J. Risk 2, 21–41 (2000)

    Google Scholar 

  59. 59.

    Rockafellar, R.T., Wets, R.J.B.: Scenarios and policy aggregation in optimization under uncertainty. Math. Oper. Res. 16(1), 119–147 (1991)

    MathSciNet  MATH  Article  Google Scholar 

  60. 60.

    Ross, S.: Brownian motion and stationary processes. In: Introduction to Probability Models, 9th edn. Elsevier, Amsterdam (2007). Chapter 10

    Google Scholar 

  61. 61.

    Ryan, S., McCalley, J., Woodruff, D.: Long term resource planning for electric power systems under uncertainty. Technical report, Iowa State University (2011)

  62. 62.

    Sahinidis, N.: Optimization under uncertainty: state-of-the-art and opportunities. Comput. Chem. Eng. 28, 971–983 (2004)

    Article  Google Scholar 

  63. 63.

    Schultz, R., Tiedemann, S.: Conditional Value-at-Risk in stochastic programs with mixed-integer recourse. Math. Program. 105(2–3), 365–386 (2005)

    MathSciNet  Google Scholar 

  64. 64.

    Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on Stochastic Programming: Modeling and Theory. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Google Scholar 

  65. 65.

    Slyke, R.M.V., Wets, R.J.: L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17, 638–663 (1969)

    MathSciNet  MATH  Article  Google Scholar 

  66. 66.

    Takriti, S., Ahmed, S.: On robust optimization of two-stage systems. Math. Program., Ser. A 99, 106–126 (2004)

    MathSciNet  Article  Google Scholar 

  67. 67.

    Voorspools, K., D’haeseleer, W.: An analytical formula for the capacity credit of wind power. Renew. Energy 31, 45–54 (2006)

    Article  Google Scholar 

  68. 68.

    Voropai, N., Ivanova, E.: Multi-criteria decision analysis techniques in electric power system expansion planning. Int. J. Electr. Power Energy Syst. 24, 71–78 (2002)

    Article  Google Scholar 

  69. 69.

    Watson, J., Murray, R., Hart, W.: Formulation and optimization of robust sensor placement problems for drinking water contamination warning systems. J. Infrastruct. Syst. 15(4), 330–339 (2009)

    Article  Google Scholar 

  70. 70.

    Watson, J.P., Woodruff, D., Hart, W.: Modeling and solving stochastic programs in Python. Math. Program. Comput. (2011) (to appear)

Download references

Acknowledgements

Support for this work at Iowa State University was provided by its Electric Power Research Center. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94-AL85000. The Sandia and University of California Davis authors were funded in part by the Department of Energy’s Office of Science.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarah M. Ryan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jin, S., Ryan, S.M., Watson, JP. et al. Modeling and solving a large-scale generation expansion planning problem under uncertainty. Energy Syst 2, 209–242 (2011). https://doi.org/10.1007/s12667-011-0042-9

Download citation

Keywords

  • Generation expansion planning
  • Stochastic programming
  • Scenario generation
  • Multiple replication procedure
  • Solution stability