Skip to main content
Log in

Transmission expansion planning with re-design

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Expanding an electrical transmission network requires heavy investments that need to be carefully planned, often at a regional or national level. We study relevant theoretical and practical aspects of transmission expansion planning, set as a bilinear programming problem with mixed 0–1 variables. We show that the problem is NP-hard and that, unlike the so-called Network Design Problem, a transmission network may become more efficient after cutting-off some of its circuits. For this reason, we introduce a new model that, rather than just adding capacity to the existing network, also allows for the network to be re-designed when it is expanded. We then turn into different reformulations of the problem, that replace the bilinear constraints by using a “big-M” approach. We show that computing the minimal values for the “big-M” coefficients involves finding the shortest and longest paths between two buses. We assess our theoretical results by making a thorough computational study on real electrical networks. The comparison of various models and reformulations shows that our new model, allowing for re-design, can lead to sensible cost reductions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

S :

bus-circuit incidence matrix

iB:

index bus, in the set of buses

\(\overline{g}_{i}\) :

maximal generation at bus i

d i :

load at bus i

Ω=Ω0∪Ω1 :

set of all circuits

Ω0 :

set of existing circuits

Ω1 :

set of candidate circuits

1|:

cardinality of set Ω1

i(k), j(k):

terminal buses of circuit k

γ k :

susceptance of circuit k

\(\overline{f}_{k}\) :

capacity of circuit k

c k :

investment cost of circuit k

k 1 k 2 :

not parallel circuits

k 1 k 2 :

parallel circuits

E=E0E1:

set of all “fat” edges

E 0 :

set of “fat” edges containing existing circuits

E 1 :

set of “fat” edges containing candidate circuits

\(\overline{x}_{ij}\) :

maximum number of circuits that can be built between i and j

x ij :

existing number of circuits between i and j

(ij):

“fat” edge between i and j

∈ℒ ij :

index circuit among all circuits belonging to “fat” edge (ij)

SP ij :

shortest path between buses i and j

LP ij :

longest path between buses i and j

\(\mathit{LP}_{i-j}^{l}\) :

longest path between buses i and j not passing through bus l

References

  1. Abhishek, K., Leyffer, S., Linderoth, J.T.: Filmint: an outer-approximation-based solver for nonlinear mixed integer programs. Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL (2008)

  2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, New York (1993)

    Google Scholar 

  3. Alguacil, N., Motto, A.L., Conejo, A.J.: Transmission expansion planning: A mixed-integer LP approach. IEEE Trans. Power Syst. 18(3), 1070–1077 (2003)

    Article  Google Scholar 

  4. Bahiense, L., Oliveira, G.C., Pereira, M., Granville, S.: A mixed integer disjunctive model for transmission network expansion. IEEE Trans. Power Syst. 16(3), 560–565 (2001)

    Article  Google Scholar 

  5. Bienstock, D., Mattia, S.: Using mixed-integer programming to solve power grid blackout problems. Discrete Optim. 4(1), 115–141 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Binato, S., Oliveira, G.C., Araújo, J.L.: A greedy randomized adaptive search procedure for transmission expansion planning. IEEE Trans. Power Syst. 16(2), 247–253 (2001)

    Article  Google Scholar 

  7. Binato, S.: Optimal expansion of transmission networks by benders decomposition and cutting planes. PhD dissertation (Portuguese), Federal University of Rio de Janeiro (2000)

  8. Birge, J.R., Louveaux, F.V.: Introduction to Stochastic Programming, 2nd edn. Springer, New York (2008)

    Google Scholar 

  9. Buygi, M.O., Balzer, G., Shanechi, H.M., Shahidehpour, M.: Market based transmission expansion planning: fuzzy risk assessment, vol. 2, pp. 427–432 (April 2004)

  10. Buygi, M.O., Shanechi, H.M., Balzer, G., Shahidehpour, M., Pariz, N.: Network planning in unbundled power systems. IEEE Trans. Power Syst. 21(3), 1379–1387 (2006)

    Article  Google Scholar 

  11. Choi, J., Tran, T., El-Keib, A.A., Thomas, R., Oh, H., Billinton, R.: A method for transmission system expansion planning considering probabilistic reliability criteria. IEEE Trans. Power Syst. 20(3), 1606–1615 (2005)

    Article  Google Scholar 

  12. Choi, J., Mount, T.D., Thomas, R.J.: Transmission expansion planning using contingency criteria. IEEE Trans. Power Syst. 22(4), 2249–2261 (2007)

    Article  Google Scholar 

  13. Crainic, T.G.: Service network design in freight transportation. Eur. J. Oper. Res. 122, 272–288 (2000)

    Article  MATH  Google Scholar 

  14. de Jesus Silva, I., Jr.: Planejamento da expansao de sistemas de transmissao considerando seguranca e planos de programacao da geracao. PhD dissertation (Portuguese), Universidade Estadual de Campinas (2005)

  15. de la Torre, S., Conejo, A.J., Contreras, J.: Transmission expansion planning in electricity markets. IEEE Trans. Power Syst. 23(1), 238–248 (2008)

    Article  Google Scholar 

  16. de Oliveira, E.J., da Silva, I.C., Jr., Pereira, J.L.R., Carneiro, S., Jr.: Transmission system expansion planning using a sigmoid function to handle integer investment variables. IEEE Trans. Power Syst. 20(3), 1616–1621 (2005)

    Article  Google Scholar 

  17. Fang, R., Hill, D.J.: A new strategy for transmission expansion in competitive electricity markets. IEEE Trans. Power Syst. 18(1), 374–380 (2003)

    Article  Google Scholar 

  18. Garver, L.L.: Transmission network estimation using linear programming. IEEE Trans. Power Appar. Syst. 89(7), 1688–1697 (1970)

    Article  Google Scholar 

  19. Hardgrave, W.W., Nemhauser, G.L.: On the relation between the traveling-salesman and the longest-path problems. Oper. Res. 10(5), 647–657 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  20. ILOG CPLEX Division, Gentilly, France: Ilog. ilog cplex 11.0 reference manual (2007)

  21. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972)

    Google Scholar 

  22. Latorre, G., Cruz, R.D., Areiza, J.M., Villegas, A.: Classification of publications and models on transmission expansion planning. IEEE Trans. Power Syst. 18(2), 938–946 (2003)

    Article  Google Scholar 

  23. Lopez, J.A., Ponnambalam, K., Quintana, V.H.: Generation and transmission expansion under risk using stochastic programming. IEEE Trans. Power Syst. 22(3), 1369–1378 (2007)

    Article  Google Scholar 

  24. Lu, M., Dong, Z.Y., Saha, T.K.: A framework for transmission planning in a competitive electricity market. In: Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005, pp. 1–6. IEEE/PES, New York (2005)

    Google Scholar 

  25. Maghouli, P., Hosseini, S.H., Buygi, M.O., Shahidehpour, M.: A multi-objective framework for transmission expansion planning in deregulated environments. IEEE Trans. Power Syst. 24(2), 1051–1061 (2009)

    Article  Google Scholar 

  26. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1999)

    MATH  Google Scholar 

  27. Oliveira, G.C., Binato, S., Bahiense, L., Thome, L., Pereira, M.V.: Security-constrained transmission planning: A mixed-integer disjunctive approach. In: Proc. IEEE/Power Eng. Soc. Transmission and Distribution Conf., Sao Paulo, Brazil (2004)

  28. Oliveira, G.C., Binato, S., Pereira, M.V.F.: Value-based transmission expansion planning of hydrothermal systems under uncertainty. IEEE Trans. Power Syst. 22(4), 1429–1435 (2007)

    Article  Google Scholar 

  29. Oliveira, G.C., Binato, S., Pereira, M.V.F., Thomé, L.M.: Multi-stage transmission expansion planning considering multiple dispatches and contingency criterion. Congresso Brasileiro de Automática (2004)

  30. Tsamasphyrou, P., Renaud, A., Carpentier, P.: Transmission network planning under uncertainty with benders decomposition. Lect. Notes Econ. Math. Syst. 481, 457–472 (2000)

    MathSciNet  Google Scholar 

  31. Pereira, M., Granville, S.: Analysis of the linearized power flow model in benders decomposition. Tech. Report SOL 85-04, SOL Lab, Dept. of Oper. Research, Stanford University (1985)

  32. Quesada, I., Grossman, I.E.: An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng. 16(10/11), 937–947 (1992)

    Article  Google Scholar 

  33. Raman, R., Grossmann, I.E.: Modeling and computational techniques for logic based integer programming. Comput. Chem. Eng. 18(7), 563–578 (1994)

    Article  Google Scholar 

  34. Reis, F.S., Carvalho, P.M.S., Ferreira, L.A.F.M.: Reinforcement scheduling convergence in power systems transmission planning. IEEE Trans. Power Syst. 20(2), 1151–1157 (2005)

    Article  Google Scholar 

  35. Silva, I.J., Rider, M.J., Romero, R., Murari, C.A.F.: Transmission network expansion planning considering uncertainty in demand. IEEE Trans. Power Syst. 21(4), 1565–1573 (2006)

    Article  Google Scholar 

  36. Singh, K., Philpott, A., Wood, K.: Column-generation for design of survivable networks. Working paper (2008)

  37. Tor, O.B., Guven, A.N., Shahidehpour, M.: Congestion-driven transmission planning considering the impact of generator expansion. IEEE Trans. Power Syst. 23(2), 781–789 (2008)

    Article  Google Scholar 

  38. Tsamasphyrou, P., Renaud, A., Carpentier, P.: Transmission network planning: an efficient Benders decomposition scheme. In: 13th PSCC in Trondheim (1999)

  39. Uehara, R., Uno, Y.: On computing longest paths in small graph classes. Int. J. Found. Comput. Sci. 18(5), 911–930 (2007)

    Article  MathSciNet  Google Scholar 

  40. Villanasa, R.: Transmission network planning using linear and mixed linear integer programming. PhD thesis, Ressenlaer Polythechnic Institute (1984)

  41. Wong, R.T.: A dual ascent approach for Steiner tree problems on a directed graph. Math. Program. 28(3), 271–287 (1984)

    Article  MATH  Google Scholar 

  42. Yuan, D.: An annotated bibliography in communication network design and routing. PhD thesis, Institute of Technology, Linköpings Universitet (2001)

  43. Zhao, J.H., Dong, Z.Y., Lindsay, P., Wong, K.P.: Flexible transmission expansion planning with uncertainties in an electricity market. IEEE Trans. Power Syst. 24(1), 479–488 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Poss.

Additional information

C. Sagastizábal on leave from INRIA Rocquencourt, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moulin, L.S., Poss, M. & Sagastizábal, C. Transmission expansion planning with re-design. Energy Syst 1, 113–139 (2010). https://doi.org/10.1007/s12667-010-0010-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-010-0010-9

Keywords

Navigation