Skip to main content
Log in

Liquid Phase Diffusion Analysis of WC–Co–Ni–Fe/HSS Composite Materials Based on DICTRA

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Thermo-Calc and DICTRA software simulations were used to predict the feasibility of Co–Ni–Fe additives applied to WC/HSS composites, and WC–Co–Ni–Fe/HSS composites were prepared. The elemental diffusion behavior in the WC-steel composites using Co, Ni and Fe additive was investigated. The results showed that the Co–Ni–Fe additive forms more liquid phase at lower temperatures, and the Co–Ni–Fe additive has a larger pre-exponential factor and lower diffusion activation energy. The results of the experimental sample demonstrate that the Co–Ni–Fe elements in the WC region are uniformly distributed around the WC. The Co, Ni, Fe and Cr elements mutual diffuse in the WC and HSS regions, with the Co and Fe elements being more pronounced. The diffusion of W is almost non-existent. The Co–No–Fe additive contributes to the bonding of the WC to the HSS and facilitates the densification of the WC region. The simulation results are consistent with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dixit P, and Suhane A, Mater Today 62 (2022) 4194.

    CAS  Google Scholar 

  2. Lee C S, Li H, and Chandel R S, J Mater Process Tech 89–90 (1999) 326.

    Article  Google Scholar 

  3. Zhang X, Liu G, Tao J, Shao H, Fu H, Pan T, and Qiao G J, J Mater Eng Perform 26 (2017) 488.

    Article  CAS  Google Scholar 

  4. Chen L Y, Zhang C, Guo Z N, and Liu G Y, Int J Refract Met H 113 (2023) 106221.

    Article  CAS  Google Scholar 

  5. Amelzadeh M, and Mirsalehi S E, J Manuf Process 36 (2018) 450.

    Article  Google Scholar 

  6. Lv G J, Yang X F, Gao Y L, Wang S R, Xiao J P, Zhang Y F, Chen K F, and Yang H, Int J Refract Met H 111 (2023) 106068.

    Article  CAS  Google Scholar 

  7. Ferdinandy M, Lofaj F, Dusza J, and Kottfer D, Chem Listy 105 (2011) S442.

    Google Scholar 

  8. Cheniti B, Miroud D, Badji R, Allou D, Csanádi T, Fides M, and Hvizdoš P, Int J Refract Met Hard 64 (2017) 210.

    Article  CAS  Google Scholar 

  9. Amelzadeh M, and Mirsalehi S E, Mater Sci Eng B. 259 (2020) 114597.

    Article  CAS  Google Scholar 

  10. Jiang C, Chen H, Wang Q, and Li Y, J Mater Process Tech 229 (2016) 562.

    Article  CAS  Google Scholar 

  11. Singh H, Kumar M, and Singh R, J Therm Spray Technol 32 (2023) 970.

    Article  CAS  Google Scholar 

  12. Singh J, Kumar S, and Mohapatra S K, Wear 376–377 (2017) 1105.

    Article  Google Scholar 

  13. Sun S, Wang J, Xu J, Cheng X, Jing C, Chen Z, Ru H, Liu Y, and Jiao J, Mater Today Commun 37 (2023) 106939.

    Article  CAS  Google Scholar 

  14. Olumor I D, Wiśniewska M, Torresani E, and Olevsky E A, J Mater Res Technol 26 (2023) 3234.

    Article  CAS  Google Scholar 

  15. Hasan M, Islam M A, Huang Z, Zhao J, and Jiang Z, Mater Sci Tech-Lond 39 (2023) 683.

    Article  CAS  Google Scholar 

  16. Liverani E, Ascari A, and Fortunato A, Surf Coat Tech 464 (2023) 129556.

    Article  CAS  Google Scholar 

  17. Chang S H, Chang M H, and Huang K T, J Alloys Compd 649 (2015) 89.

    Article  CAS  Google Scholar 

  18. Shon I J, Jeong I K, Ko I Y, Doh J M, and Woo K D, Ceram Int 35 (2009) 339.

    Article  CAS  Google Scholar 

  19. Soria-Biurrun T, Lozada-Cabezas L, Navarrete-Cuadrado J, Ibarreta-Lopez F, Martinez-Pampliega R, and Sánchez-Moreno J M, Int J Refract Met H 110 (2023) 105994.

    Article  CAS  Google Scholar 

  20. Zhu S, Hui J, Qin J, and Weiwei D, Int J Refract Met H 113 (2023) 106157.

    Article  CAS  Google Scholar 

  21. Habibi F, Samadi A, and Nouri M, Int J Refract Met H 116 (2023) 106354.

    Article  CAS  Google Scholar 

  22. Kang N, Ma W, Li F, Liao H, Liu M, and Coddet C, Vacuum 154 (2018) 69.

    Article  CAS  Google Scholar 

  23. Aghajani H, Hadavand E, Peighambardoust N S, and Khameneh-asl S, Surf Interfaces 18 (2020) 100392.

    Article  CAS  Google Scholar 

  24. Liu S, Li Y, Wang Y, Wei Y, Zhang L, Wang J, and Yang X, J Mater Res Technol 19 (2022) 1821.

    Article  CAS  Google Scholar 

  25. Salmaliyan M, Malek Ghaeni F, and Ebrahimnia M, Surf Coat Tech 321 (2017) 81.

    Article  CAS  Google Scholar 

  26. Li H, Zhang H, Li G, Zhao D, and Jiang Z, Int J Refract Met H 108 (2022) 105951.

    Article  CAS  Google Scholar 

  27. Andersson J O, Helander T, Höglund L, Shi P, and Sundman B, Calphad 26 (2002) 273.

    Article  CAS  Google Scholar 

  28. Walbrühl M, Blomqvist A, Korzhavyi P A, and Araujo C M, Int J Refract Met H 66 (2017) 174.

    Article  Google Scholar 

  29. Brieseck M, Bohn M, and Lengauer W, J Alloys Compd 489 (2010) 408.

    Article  CAS  Google Scholar 

  30. Sarkar M, Acharya P K, and Bhattacharya B, J Colloid Interf Sci 266 (2003) 28.

    Article  CAS  Google Scholar 

  31. Dubrovinskaia N A, Dubrovinsky L S, Saxena S K, Selleby M, and Sundman B, J Alloys Compd 285 (1999) 242.

    Article  CAS  Google Scholar 

  32. Machado I F, Girardini L, Lonardelli I, and Molinari A, Int J Refract Met H 27 (2009) 883.

    Article  CAS  Google Scholar 

  33. Siddiquee A N, and Pandey S, Int J Adv Manuf Tech 73 (2014) 479.

    Article  Google Scholar 

  34. Springer H, Kostka A, dos Santos J F, and Raabe D, Mater Sci Eng A-Struct 528 (2011) 4630.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (NSFC, No. 52274338).

Author information

Authors and Affiliations

Authors

Contributions

HL helped in writing—original draft and writing—review and editing. HZ contributed to writing—review and editing and conceptualization. ZJ contributed to funding acquisition and resources.

Corresponding authors

Correspondence to Hongmei Zhang or Zhengyi Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhang, H. & Jiang, Z. Liquid Phase Diffusion Analysis of WC–Co–Ni–Fe/HSS Composite Materials Based on DICTRA. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03331-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03331-x

Keywords

Navigation