Skip to main content
Log in

Effect of Transient Thermal Conditions in the Slag Region on Ladle Refining

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Most studies on desulfurization during ladle processing are reported under isothermal conditions. The current study examines the impact of prevailing non-isothermal conditions during ladle processing on ladle refining. A transient, multiphase thermo-fluid model of ladle processing is implemented using Ansys Fluent. The bubble plumes are modeled using discrete phase model (DPM). Temperature-dependent thermophysical properties of slag, obtained from FactSage, are incorporated in the model as user-defined function (UDF) to study the effect of non-isothermal conditions. Rising argon bubble plumes and the opening of the slag–metal interface have a cooling effect in the slag-eye region, which causes changes in the thermophysical properties of the slag phase. The local variations in the temperature of slag near the slag–metal interface are significant and far removed from the average metal temperature. These are reflected in the flow and mass transfer characteristics of this complex multiphase system. A comparative study is undertaken to demonstrate that non-isothermal conditions in the slag–metal region have a significant effect on the slag-eye opening and desulfurization kinetics. It is found that non-isothermal effects have a significant bearing on slag properties and thereby must be considered for realistic prediction of slag-eye opening, desulfurization, and all phenomena involving slag–metal interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhang L, and Thomas B G, ISIJ Int 43 (2003) 271.

    Article  CAS  Google Scholar 

  2. Ghosh A, Secondary Steelmaking, Principles and Applications, CRC Press LLC, New York (2001), p 200.

    Google Scholar 

  3. Mazumdar D, and Guthrie R I L, ISIJ Int 35 (1995) 1.

    Article  CAS  Google Scholar 

  4. Mazumdar D, and Evans J W, ISIJ Int 44 (2004) 447.

    Article  CAS  Google Scholar 

  5. Sichen D, Steel Res Int 83 (2012) 825.

    Article  Google Scholar 

  6. Mazumdar D, and Evans J W, Modelling of Steel Making Process, CRC Press Taylor & Francis Group, London (2004), p 175.

    Google Scholar 

  7. Liu Y, et al., Metall Mater Trans B 50 (2019) 555.

    Article  CAS  Google Scholar 

  8. Conejo A N, Processes 8, (2020) 750.

    Article  CAS  Google Scholar 

  9. Xie Y, and Oeters F, Steel Res 63 (1992) 93.

    Article  CAS  Google Scholar 

  10. Yonezawa K, and Schwerdtfeger K, Metall Mater Trans B 30 (1999) 763.

    Article  Google Scholar 

  11. Mazumdar D, and Evans J W, Metall Mater Trans B 35 (2004) 400.

    Article  Google Scholar 

  12. Krishnapisharody K, and Irons G A, ISIJ Int 48 (2008) 1807.

    Article  CAS  Google Scholar 

  13. Wu L, Valentin P, and Sichen D, Steel Res Int 81 (2010) 440.

    Google Scholar 

  14. Krishnapisharody K, and Irons G A, Metall Mater Trans B 37 (2006) 763.

    Article  Google Scholar 

  15. Liu Z, Li L, and Li B, ISIJ Int 57 (2017) 1971.

    Article  CAS  Google Scholar 

  16. Liu W, Tang H, Yang S, Wang M, Li J, Liu Q, and Liu J, Metall Mater Trans B 49 (2018) 2681.

    Article  CAS  Google Scholar 

  17. Ramasetti E K, Visuri V-V, Sulasalmi P, Fabritius T, Saatio T, Li M, and Shao L, Metals 9, (2019) 829.

    Article  CAS  Google Scholar 

  18. Ramasetti E K, Visuri V V, Sulasalmi P, Fabritius T, Savolainen J, Li M, and Shao L, Metals 9, (2019) 1048.

    Article  CAS  Google Scholar 

  19. Mantripragada V T, and Sarkar S, Can Metall Q 59, (2020) 159.

    Article  CAS  Google Scholar 

  20. Jardón-Pérez L E, González-Morales D R, Trápaga G, González-Rivera C, and Ramírez-Argáez M A, Metals 9, (2019) 555.

    Article  Google Scholar 

  21. Conejo A N, and Feng W, Metall Mater Trans B 53, (2022) 999.

    Article  CAS  Google Scholar 

  22. Mao C, Guo X, Walla N J, Silaen A K, Thapliyal V, and Zhou C Q, Ironmak Steelmak 50 (2023) 1539.

    Article  Google Scholar 

  23. Zhang H, Conejo A N, Dutta A, Ramírez-Argáez M A, and Yan H, Ironmak Steelmak 49, (2022) 1057.

    Article  CAS  Google Scholar 

  24. Cao Q, and Nastac L, Metall Mater Trans B 49 (2018) 1388.

    Article  CAS  Google Scholar 

  25. Cao Q, Pitts A, and Nastac L, Ironmak Steelmak 45, (2018) 280.

    Article  CAS  Google Scholar 

  26. Singh U, Anapagaddi R, Mangal S, Padmanabhan K A, and Singh A K, Metall Mater Trans B 47 (2017) 1804.

    Article  Google Scholar 

  27. Nath N K, Mandal K, Singh A K, Basu B, and Ghosh A, Ironmak Steelmak 33 (2006) 140. https://doi.org/10.1179/174328106X80082

    Article  CAS  Google Scholar 

  28. Mukhopadhyay A, Deb P, Ghosh A, Basu B, and Mukhopadhyay P K, Steel Res 72 (2001) 192.

    Article  CAS  Google Scholar 

  29. Deb P, Mukhopadhyay A, Ghosh A, Basu B, and Sarkar S, Steel Res 72 (2001) 200.

    Article  CAS  Google Scholar 

  30. Volkova O, and Dieter J, ISIJ Int 43 (2003) 1185.

    Article  CAS  Google Scholar 

  31. Çamdali Ü, and Tunc M, J Iron Steel Res Int 13 (2006) 18.

    Article  Google Scholar 

  32. Zimmer A, Lima A N C, Trommer R M, Bragança S R, and Bergmann C P, J Iron Steel Res Int 15, (2008) 11.

    Article  CAS  Google Scholar 

  33. Glaser B, Björn M G, and Du S, Steel Res Int 82 (2011) 1425.

    Article  CAS  Google Scholar 

  34. Tripathi A, Saha J K, Singh J B, and Ajmani S K, ISIJ Int 52 (2012) 1591.

    Article  CAS  Google Scholar 

  35. Buenrostro J E F, Bocanegra C A H, Ramos-Banderas J A, Alonso E T, and Argáez M A R, Trans Indian Inst Met 72 (2019) 899.

    Article  Google Scholar 

  36. Li B, Yin H, Zhou C Q, and Tsukihashi F, ISIJ Int 48 (2008) 1704.

    Article  CAS  Google Scholar 

  37. Li L, Liu Z, Li B, Matsuura H, and Tsukihashi F, ISIJ Int 55 (2015) 1337.

    Article  CAS  Google Scholar 

  38. Li L, and Li B, JOM 68 (2016) 2160.

    Article  CAS  Google Scholar 

  39. Li L, Li B, and Liu Z, ISIJ Int 57 (2017) 1980.

    Article  CAS  Google Scholar 

  40. Ramasetti E K, Visuri V V, Sulasalmi P, Palovaara T, Gupta A K, and Fabritius T, Steel Res Int 90 (2019) 1900088.

    Article  Google Scholar 

  41. Jonsson L, and Jönsson P, ISIJ Int 36 (1996) 1127.

    Article  CAS  Google Scholar 

  42. Jonsson L, Sichen D, and Jönsson P, ISIJ Int 38 (1998) 260.

    Article  CAS  Google Scholar 

  43. Gonzalez H, Banderas J A R, Alonso E T, Diaz G S, and Bocanegra C A H, J Iron Steel Res Int 24 (2017) 888.

    Article  Google Scholar 

  44. Kang J G, Shin J H, Chung Y, and Park J H, Metall Mater Trans B 48 (2017) 2123.

    Article  CAS  Google Scholar 

  45. He B, Xin Z, Zhang J, Li L, Han D, Xiao S, and Liu Q, Steel Res Int 94 (2023) 2200965.

    Article  CAS  Google Scholar 

  46. Hou D, Jiang Z-H, Dong Y-W, Li Y, Gong W, and Liu F-B, Metall Mater Trans B 48 (2017) 1885.

    Article  CAS  Google Scholar 

  47. Sinha A, Singh A, arXiv preprint arXiv:2308.06798 (2023)

  48. Batchelor G K, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge (1967).

    Google Scholar 

  49. Modest M F, Radiative Heat Transfer Series in Mechanical Engineering, McGraw-Hill, Cambridge (1993), p 263.

    Google Scholar 

  50. Launder B E, and Spalding D B, Lectures in Mathematical Models of Turbulence, Academic Press, London (1972), p 4.1.

    Google Scholar 

  51. Bale C W, Chartrand P, Degterov S A, Eriksson G, and Preston S, CALPHAD 26 (2002) 189.

    Article  CAS  Google Scholar 

  52. Roscoe R, Br J Appl Phys 3 (1952) 267.

    Article  Google Scholar 

  53. Sinha A, Thesis, Computational Study of Flow Field and Associated Slag-Metal Reactions in a Gas Stirred Ladle 2020, IIT Kanpur, Kanpur (2020).

    Google Scholar 

  54. Liu Z, Pandelaers L, Blanpain B, and Guo M, Metall Mater Trans B 49 (2018) 2469.

    Article  CAS  Google Scholar 

  55. Rosenberg C L, and Handy M R, J Metamorph Geol 23 (2005) 19.

    Article  Google Scholar 

  56. Mills K, Southern Afr Pyrometall 7 (2011) 35.

    Google Scholar 

  57. Wilcox D C, AIAA J 26 (1988) 1299.

    Article  Google Scholar 

  58. Danckwerts P W, Ind Eng Chem 43 (1953) 1460.

    Article  Google Scholar 

  59. Lamont J C, and Scott D S, AIChE J 16 (1970) 513.

    Article  CAS  Google Scholar 

  60. Fluent A N S Y S. ANSYS Inc., USA 15317 (2011), p 724.

Download references

Acknowledgements

This work was carried out under the IMPRINT-I project of the Ministry of Education, Government of India, and funded jointly by the Ministry of Education and the Ministry of Steel (Project No. MHRD/MET/2016F). The authors gratefully acknowledge support from the Ministry of Education, the Ministry of Steel, and Indian Institute of Technology Kanpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amarendra K. Singh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, A., Maji, S. & Singh, A.K. Effect of Transient Thermal Conditions in the Slag Region on Ladle Refining. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03327-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03327-7

Keywords

Navigation