Skip to main content
Log in

Use of Coke Dust as Slag De-oxidation Agent for Improving Desulfurization in Si-Killed HC Steels

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Experiments were carried out in Si-killed high carbon steels with an innovative and cost effective approach, coke dust as a slag de-oxidation agent to reduce reducible oxides quantity and also its activity in the slag to improve desulfurization efficiency. The flux addition practice was also modified by increasing lime addition compared to synthetic slag, in order to increase the activity of CaO throughout the LF refining process. Various parameters such as the amount of carryover slag, melting point, electrical conductivity, viscosity, activity of FeO, CaO of ladle slag were calculated and its effect on desulfurization efficiency was studied in detail. Finally, an optimized slag composition was suggested using an error function. Industrial trials demonstrated a reduction in reducible oxide content from 5 to 1.5% and the maintenance of an increased CaO activity throughout the refining process improved desulfurization efficiency from 38% to greater than 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jeong T S, Cho J H, Heo J H, and Park J H, J Mater Res Technol 18 (2002) 2250. https://doi.org/10.1016/j.jmrt.2022.03.048

    Article  CAS  Google Scholar 

  2. Yang H L, Wu X L, Ye J S, Fang Y, and Zhao X B, Ironmak Steelmak 45 (2018) 386. https://doi.org/10.1080/03019233.2016.1274549

    Article  CAS  Google Scholar 

  3. Andersson M, Hallberg M, Jonsson L, and Jönsson P, Ironmak Steelmak 29 (2002) 224. https://doi.org/10.1179/030192302225004106

    Article  CAS  Google Scholar 

  4. Wcisło Z, Michaliszyn A, and Baka A, J Achiev Mater Manuf Eng 55 (2012) 390.

    Google Scholar 

  5. Takahashi D, Kamo M, Kurose Y, and Nomura H, Ironmak Steelmak 30 (2003) 116. https://doi.org/10.1179/030192303225001711

    Article  CAS  Google Scholar 

  6. Geveci A, Keskinkilic E, and Topkaya Y A, Sohn Int Symp: Adv Process Metals Mater 7 (2006) 317.

    CAS  Google Scholar 

  7. Yu H X, Wang X H, Wang M, and Wang W J, Int J Miner Metall Mater 21 (2014) 1160. https://doi.org/10.1007/s12613-014-1023-5

    Article  CAS  Google Scholar 

  8. Schrama F N H, Beunder E M, Van den Berg B, Yang Y, and Boom R, Ironmak Steelmak 44 (2017) 333.

    Article  CAS  Google Scholar 

  9. Kamaraj A, Saravanakumar R, and Rajaguru M, IOP Conf Ser Mater Sci Eng 314 (2018) 012022.

    Article  Google Scholar 

  10. Roy D, Pistorius P C, and Fruehan R J, Metall Mater Trans B 44 (2013) 1095. https://doi.org/10.1007/s11663-013-9888-7

    Article  CAS  Google Scholar 

  11. Hüsken R, Şener B, and Cappel J, Metall Plant Technol Int 35 (2012) 42.

    Google Scholar 

  12. Piva S P, and Pistorius P C, Processes 9 (2021) 1258. https://doi.org/10.3390/pr9081258

    Article  CAS  Google Scholar 

  13. Kumar S, Keshari KK, Bandhyopadhyay AK, Prasad A, Kumar V, Sen N, Choudhury K, Kumar R, ‘An innovative slag engineering approach for improving de-sulphurisation efficiency in silicon killed steels’, In Recent Advances in Manufacturing Processes, (2020) 211, https://doi.org/10.1007/978-981-16-3686-8_17

  14. Yan P, Guo X, Huang S, Van Dyck J, Guo M, and Blanpain B, ISIJ Int 53 (2013) 459. https://doi.org/10.2355/isijinternational.53.459

    Article  CAS  Google Scholar 

  15. Ayyandurai A, Adv Mater Process Technol 8 (2022) 2022. https://doi.org/10.1080/2374068X.2021.1878729

    Article  Google Scholar 

  16. Chatterjee S, Konar B, Maity A, Chattopadhyay K, ‘Development of Alternative Flux for Liquid Steel Desulphurization’, In Proc. Iron Steel Technol. Conf, (2019) 1211–1223

  17. Jeong T S, and Park J H, Metall Mater Trans B 51 (2020) 2309. https://doi.org/10.1007/s11663-020-01889-7

    Article  CAS  Google Scholar 

  18. Moreira A S B, Silva C A, and Silva I A, REM-Int Eng J 71 (2018) 261. https://doi.org/10.1590/0370-44672017710039

    Article  Google Scholar 

  19. Zhao Q, Mei X, Gao L, Zhang J, Wang Z, Sun L, Zevenhoven R, and Saxén H, Metals 11 (2021) 1973. https://doi.org/10.3390/met11121973

    Article  CAS  Google Scholar 

  20. Mills K C, ISIJ Int 33 (1993) 148. https://doi.org/10.2355/isijinternational.33.148

    Article  CAS  Google Scholar 

  21. Coudure J M, and Irons G A, ISIJ Int 34 (1994) 155.

    Article  CAS  Google Scholar 

  22. Andersson E, and Sichen D, Steel Res Int 80 (8), (2009) 544–551. https://doi.org/10.2374/SRI09SP017

    Article  CAS  Google Scholar 

  23. Varanasi S S, Venu Madhava Rao M, Santanu D, Alli S R, Seshu Kumar D S, Tangudu A K, Gollapalli V, Pathak R K, and Santhamma C S, Ironmak Steelmak 49 (2022) 813.

    Article  CAS  Google Scholar 

  24. Sahoo K K, and Pathak R K, Iron Steel Technol 19 (2022) 162.

    Article  Google Scholar 

  25. Ohta H, and Suito H, Metall Mater Trans B 29 (1998) 119. https://doi.org/10.1007/s11663-998-0014-1

    Article  Google Scholar 

  26. Keskinkilic E, Geveci A H, and Topkaya Y A, Canad Metall Q 46 (2007) 391.

    Article  CAS  Google Scholar 

  27. Temkin M O, Acta Phys Chem USSR 20 (1945) 411.

    CAS  Google Scholar 

  28. Ward, RC, ‘An Introduction to the Physical Chemistry of Iron and Steelmaking’, (1962)." Edward Arnold 8, 122

  29. Urbain G, Cambier F, Deletter M, and Anseau M R, Trans J British Ceramics Society 80 (4), (1981) 139–141.

    CAS  Google Scholar 

  30. Lindström D ‘A study on desulfurization of hot metal using different agents’, PhD diss., KTH Royal Institute of Technology, (2014)

  31. Pg J, Jonsson L, and Sichen D, ISIJ Int 37 (1997) 484.

    Article  Google Scholar 

  32. Bennett J, and Kwong K-S, Ironmak Steelmak 37 (2010) 529.

    Article  CAS  Google Scholar 

  33. Farahat R, Eissa M, Megahed G, Fathy A, Abdel-Gawad S, and El-Deab M S, ISIJ Int 59 (2019) 216. https://doi.org/10.2355/isijinternational.ISIJINT-2018-507

    Article  CAS  Google Scholar 

  34. Wang L, Steel Res Int 80 (2009) 680.

    Article  CAS  Google Scholar 

  35. Medved, Jožef, PrimožMrvar, VasilijGontarev, FrantišekKavička, and MiroZdovc, ‘ Electrical conductivity of molten slags measured by the new method’, (2002)

  36. Basov A V, Magidson I A, and Smirnov N A, Steel Transl 45 (2015) 819. https://doi.org/10.3103/S0967091215110030

    Article  Google Scholar 

  37. Eric R H, J South Afr Inst Min Metall 104 (2004) 499.

    CAS  Google Scholar 

  38. Zhang G-H, Yan B-J, Chou K-C, and Li F-S, Metall Mater Trans B 42 (2011) 261. https://doi.org/10.1007/s11663-011-9484-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veerababu Gollapalli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gollapalli, V., Pathak, R.K., Raghuram, P. et al. Use of Coke Dust as Slag De-oxidation Agent for Improving Desulfurization in Si-Killed HC Steels. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03296-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03296-x

Keywords

Navigation