Skip to main content
Log in

Criticalities in the Laser Welding of Li-ion Batteries

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Li-ion batteries of higher capacities are fabricated in prismatic-shaped aluminium container-lid assembly and are laser weld for leak-proof design. Hermetic sealing of the Li-ion cells is essential for the consistent cycle life and capacity of the Li-ion cells. Laser welding of aluminium alloys poses several problems due to their high reflectivity and thermal conductivity, and several defects are commonly observed. Pore formation is one of the major defects observed in the laser welding of Li-ion cells causing cell leaking and deteriorating the electrochemical performance. The methodology for minimizing the pores, the reasons for their formation, and the optimization of laser welding parameters for minimizing these defects in prismatic Li-ion cells are discussed in this paper. The reasons attributing to pore formation have been categorized into contaminants, weld practices, laser parameter and discussed in detail. It is observed that pore formation from contaminants could be avoided by use of non-dyed anodized containers. Use of weld practices like slower weld speed of 0.1 mm/s ensures complete fusion. Ending the laser beyond the weld prevents the formation of craters containing pores. A slightly defocused beam of 500 µm spot size prevents spatter formation. Optimum laser energy of 12 J ensures complete depth of fusion preventing leaks due to through pores. Hermetic sealing of the prismatic cells with lower that 10−6 cc s−1 leak rate could be finally achieved by adopting these measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Athanasopoulou L, Bikas H, Papacharalampopoulos A, Stavropoulos P, and Chryssolouris G, Int J Comput Integr Manuf 36 (2023) 334. https://doi.org/10.1080/0951192X.2022.2081363

    Article  Google Scholar 

  2. König A, Nicoletti L, Schröder D, Wolff S, and Waclaw A, World Electr Veh J 12 (2021) 21. https://doi.org/10.3390/wevj12010021

    Article  Google Scholar 

  3. Gitzendanner R L, Russell P G, Marsh C, and Marsh R A, J Power Sourc 81–82 (1999) 847. https://doi.org/10.1016/S0378-7753(99)00120-2

    Article  Google Scholar 

  4. Yunlong Q, Sun Z, Spettmann C, Xing B, Xia Y, and Zhou Q, Int J Mech Sci 259 (2023) 108637. https://doi.org/10.1016/j.ijmecsci.2023.108637

    Article  Google Scholar 

  5. Stock S, Hagemeister J, Grabmann S, Kriegler J, Keilhofer J, and Daub R, Electrochimica Acta 471 (2023) 143341. https://doi.org/10.1016/j.electacta.2023.143341

    Article  CAS  Google Scholar 

  6. Orendorff C J, Electrochem Soc Interface, (2012) 61. https://doi.org/10.1149/2.F07122if

  7. Wetzig D, Reismann M, Methods for Leak testing Li-ion batteries to assure quality with proposed rejection limit standards, SAE Technical paper 2020-01-0448 (2020). https://doi.org/10.4271/2020-01-0448

  8. Stavropoulos P, Bikas H, Sabatakakis K, Theoharatos C, and Grossi S, Procedia CIRP 111 (2022) 784. https://doi.org/10.1016/j.procir.2022.08.129

    Article  Google Scholar 

  9. Mercy T D, Rahul Sharma V F, Kaladharan K P, Kamalakaran S, and Aravamuthan G B, Mater Sci Forum 710 (2012) 155. https://doi.org/10.4028/www.scientific.net/MSF.710.155

    Article  CAS  Google Scholar 

  10. Feng J, Zhang P, Yan H, Shi H, Qinghua L, Liu Z, Di W, Sun T, Li R, and Wang Q, Coatings 13 (2013) 1313. https://doi.org/10.3390/coatings13081313

    Article  CAS  Google Scholar 

  11. Forsman T, Kaplan A F H, Powell J, and Magnusson C, Lasers Engg 8 (1999) 295.

    CAS  Google Scholar 

  12. Wang C, He D, Cui L, Guo X, Tan Z, and Wu X, Weld World 67 (2023) 2249. https://doi.org/10.1007/s40194-023-01579-3

    Article  CAS  Google Scholar 

  13. Mercy T D, Rahul Sharma V F, and Kamalakaran Kaladharan K P, Mater Sci Forum 710 (2012) 632. https://doi.org/10.4028/www.scientific.net/MSF.710.632

    Article  CAS  Google Scholar 

  14. Indhu R, Divya S, Tak M, and Soundarpandian S, Procedia Manuf 26 (2018) 495–502. https://doi.org/10.1016/j.promfg.2018.07.058

    Article  Google Scholar 

  15. Rikka V R, Sahu S R, Tadepalli R, Bathe R, Mohan T, and Prakash R, J Mater Sci Eng B 6 (2016) 218. https://doi.org/10.17265/2161-6221/2016.9-10.002

    Article  CAS  Google Scholar 

  16. Patwa R, Herfurth H, Heinemann S, Pantsar H, Regaard B, in Sheet Metal Welding Conf. XIV, Laser Welding and Process Monitoring Applications for Advanced Manufacturing of Batteries and Fuel Cells (2010)

  17. Trinh L N, and Lee D, Metals 10 (2020) 842. https://doi.org/10.3390/met10060842

    Article  Google Scholar 

  18. Kutsuna M, Kitamura S, Shibata K, Sakamoto H, and Tsushima K, Weld. World 50 (2006) 22. https://doi.org/10.1007/BF03266511

    Article  CAS  Google Scholar 

  19. Sabatakakis K, Bourlesas N, Bikas H, Papacharalampopoulos A, and Stavropoulos P, Procedia CIRP 121 (2024) 222. https://doi.org/10.1016/j.procir.2023.09.251

    Article  Google Scholar 

  20. Papaioannou C S, Bikas H, Souflas T, Stavropoulos P, in A Regression-Based Method For Reduced Order Modelling of Laser Welding Process, (eds) Galizia F G, Bortolini M A, Springer, (2023). https://doi.org/10.1007/978-3-031-34821-1_65

  21. Stavropoulos P, Papacharalampopoulos A, Stavridis J, and Sampatakakis K, Inter J Adv Manuf Technol 110 (2020) 2991. https://doi.org/10.1007/s00170-020-05981-9

    Article  Google Scholar 

  22. Kuo T Y, and Lin Y D, Mater Trans 48–2 (2007) 219. https://doi.org/10.2320/matertrans.48.219

    Article  CAS  Google Scholar 

  23. Hafez Khalid M, Inter J Adv Manuf Techol 127 (2023) 1887. https://doi.org/10.1007/s00170-023-11665-x

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Director NSTL, Visakhapatnam, for the kind support in carrying out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Srinivas.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interests/competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivas, M., Babu, P.N.S., Kumar, P.G. et al. Criticalities in the Laser Welding of Li-ion Batteries. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03295-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03295-y

Keywords

Navigation