Skip to main content
Log in

Copper–Nickel Alloy Friction Surfaced Coating on Steel Substrates for Marine Applications

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Copper–nickel (Cu-Ni) alloys are candidate materials for marine applications where bio-fouling and sea water corrosion resistance is crucial. Friction surfacing is a solid-state coating that reduces substrate dilution levels and intermetallic compound (IMC) formation between immiscible systems particularly useful to coat Cu on steel. In the present study, Cu-Ni alloy (90% Cu and 10% Ni) was attempted coat on the steel substrate at different combinations of the axial load, rotational speed and traverse speed. The coating nature and the dimensions were correlated with processing variables. Good bonding with substrate was identified at 7.85 kN axial load, 1000 rpm rotational speed and 1.0 mm/s traverse speed. The coatings were characterized with light microscopy, scanning electron microscope, X-ray diffraction, microhardness and potentiodynamic polarization testing. It was found that the friction surfaced coatings are free from defects; having very low base metal dilution, no IMCs formation poses similar corrosion resistance as that of consumable rod under the 3.5% NaCl environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. David A.Shifler, Understanding material interactions in marine environments to promote extended structural life, Corrosion Science 47 (2005) 2335–2352. https://doi.org/10.1016/j.corsci.2004.09.027

    Article  CAS  Google Scholar 

  2. M.G. Fontana, Corrosion Engineering, 3rd Ed., McGraw-Hill, New York, 1986, p. 240.

    Google Scholar 

  3. EinalBardal, Corrosion & Protection,Springer, London, 2004, p. 250.

    Book  Google Scholar 

  4. Carol A. Powell (1994). Copper-nickel sheathing and its use for ship hulls and offshore structures, International Biodetoriation& Biodegradation 34(1994), 321–331. https://doi.org/10.1016/0964-8305(94)90091-4

    Article  CAS  Google Scholar 

  5. G. Kear, B.D. Barker, K. Stokes, F.C. Walsh, Electrochemical Corrosion Behaviour of 90-10 Cu-Ni Alloy in Chloride-Based Electrolytes, J. Appl. 34 (2004), 659–6698. https://doi.org/10.1023/B:JACH.0000031164.32520.58

    Article  CAS  Google Scholar 

  6. A.M. Alfantazi, T.M. Ahmed, D. Tromans, Corrosion behavior of copper alloys in chloride media, Mater. Des. 30 (2009) 2425–2430. https://doi.org/10.1016/j.matdes.2008.10.015

    Article  CAS  Google Scholar 

  7. M. Metikoš-Huković, R. Babić, A. Marinović, Spectrochemical Characterization of Benzotriazole on Copper, J. Electrochem. Soc. 145 (1998) 4045–4051.https://doi.org/10.1149/1.1838912

    Article  Google Scholar 

  8. Murugan, B, Study of the effect of parameters in friction surfacing of Monel over Mild Steel using linear – radial basis function model. Materials Today: Proceedings, 5(2018), 8604–8611.

    Article  CAS  Google Scholar 

  9. Larché. N, Internal corrosion of copper-nickel alloy tubes 90/10 and 70/30 in chlorinated seawater for shell and tube heat exchangers, NACE - NACE, (2019), p.13338.

  10. Susheela Bellige, Electrodeposition of Cu-Ni Coatings for Marine Protection of Mild Steel, Innovations in Corrosion and Materials Science, 5 (2015). https://doi.org/10.2174/235209490502151106195950

    Article  Google Scholar 

  11. Harold T. Michels, Alloys of Copper and Nickel for Splash Zone Sheathing of Marine Structures, Copper Development Association Inc.,(2002)

  12. Leslie H. Boulton, Aspects Of Biofouling And Corrosion On Ship Hulls Clad With Copper-Nickel, Proceedings of Corrosion and Prevention-99, (1999).

  13. David A. Shifler, Copper-Nickel Cladding On Stainless Steel, Survivability, Structures, and Materials Department Technical Report, Carderock Division, Naval Surface Warfare Center West Bethesda, (2005).

    Google Scholar 

  14. Adak, B., Nash, P., Chen, D. et al. Microstructural characterization of laser cladding of Cu-30Ni. J Mater Sci 40 (2005), 2051–2054.https://doi.org/10.1007/s10853-005-1231-5

    Article  CAS  Google Scholar 

  15. YudongAn, Effect of laser remelting on copper-nickel alloy coating prepared by extreme high-speed laser cladding, Journal of Manufacturing Processes, 95 (2023), 497–507. https://doi.org/10.1016/j.jmapro.2023.04.022

    Article  Google Scholar 

  16. V Kumar, Cra Weld Overlay - Influence f Welding Process And Parameters On Dilution And Corrosion Resistance, Stainless Steel World America 2010, (2010).

  17. P. Sreeraj, Estimation of Optimum Dilution in the GMAW Process Using Integrated ANN-GA, Hindawi Publishing Corporation Journal of Engineering Volume 2013, (2013), p. 285030. https://doi.org/10.1155/2013/285030.

    Article  Google Scholar 

  18. ShitanshuShekhar Chakraborty, Estimation of dilution in laser cladding based on energy balance approach using regression analysis, Sadhana, Indian Academy of Sciences 44 (2019) https://doi.org/10.1007/s12046-019-1134-9.

    Article  Google Scholar 

  19. A. M. Taher, Effect of iron as alloying element on electrochemical behaviour of 90:10 Cu–Ni alloy, Canadian Institute of Mining, Metallurgy and Petroleum, 50 (2011). https://doi.org/10.1179/000844311X13117643274758

    Article  Google Scholar 

  20. Yu H, et al. (2021). Influence of Fe Addition on the Microstructure and Mechanical Properties of Cu Alloys. Material Sci. 3 (2021), p. 10. https://doi.org/10.35702/msci.10010

    Article  Google Scholar 

  21. Chengwu Yao, Interface microstructure and mechanical properties of laser welding copper–steel dissimilar joint, Optics and Lasers in Engineering, 47 (2009), 807-814. https://doi.org/10.1016/j.optlaseng.2009.02.004

    Article  Google Scholar 

  22. Soysal, T.; Kou, S.; Tat, D.; Pasang, T. (2016). Macrosegregation in dissimilar-metal fusion welding. Acta Materialia, 110 (2016), 149–160. https://doi.org/10.1016/j.actamat.2016.03.004

    Article  CAS  Google Scholar 

  23. S.D. Meshram, Friction welding of dissimilar pure metals, Journal of Materials Processing Technology, 184(2007), 330-337. https://doi.org/10.1016/j.jmatprotec.2006.11.123

    Article  CAS  Google Scholar 

  24. Yanni Wei, Microstructures and Mechanical Properties of Al/Fe and Cu/Fe Joints by Continuous Drive Friction Welding, Advances in Materials Science and Engineering, (2018), p.2809356. https://doi.org/10.1155/2018/2809356

    Article  Google Scholar 

  25. Gandra, J, H. Krohn, R.M. Miranda, P. Vilaça, L. Quintino, J.F. dos SantosFriction surfacing - A reviewJournal of Materials Processing Technology, 214 (2013), 1062-1093. https://doi.org/10.1016/j.jmatprotec.2013.12.008

    Article  Google Scholar 

  26. EbrahimSeidi, Scott F. Miller,Blair E. Carlson, Friction Surfacing Deposition by Consumable Tools, Journal of Manufacturing Science and Engineering, 143 (2021), p. 120801.https://doi.org/10.1115/1.4050924

    Article  Google Scholar 

  27. D. Pereira, Wear behaviour of steel coatings produced by friction surfacing ,Journal of Materials Processing Technology, 214 (2014), 2858–2868. https://doi.org/10.1016/j.jmatprotec.2014.06.003

    Article  CAS  Google Scholar 

  28. Ramesh Puli, Corrosion performance of AISI 316L friction surfaced coatings, Corrosion Science, 62 (2012), 95–103, https://doi.org/10.1016/j.corsci.2012.04.050

    Article  CAS  Google Scholar 

  29. Kumar, B. V., Reddy, G. M., and Mohandas, T,Influence of Process Parameters on Physical Dimensions of AA6063 Aluminium Alloy Coating on Mild Steel in Friction Surfacing,Def. Technol, 11(2015), 275–281. https://doi.org/10.1016/j.dt.2015.04.001

    Article  Google Scholar 

  30. Kumar, B. V., Reddy, G. M., and Mohandas, T, Identification of Suitable Process Parameters for Friction Surfacing of Mild Steel With AA6063 Aluminium Alloy,Int. J. Adv. Manuf. Technol, 74(2014), 433–443.https://doi.org/10.1007/s00170-014-5964-7

    Article  Google Scholar 

  31. Sahoo, D. K., Chari, A. N., and Reddy, A. S, Optimization & Characterization of Friction Surfaced Coatings of AA6063 Aluminium Alloy Over AISI316 Stainless Steel Substrate,Mater. Today: Proc, 23 (2013), 1–8.

    Google Scholar 

  32. A.W. Batchelor, The effect of metal type and multi-layering on friction surfacing, Journal of Materials Processing Technology,57 (1996), 172 -181. https://doi.org/10.1016/0924-0136(95)02057-8

    Article  Google Scholar 

  33. K. Prasad Rao, Tool steel and copper coatings by friction surfacing – A thermography study, Journal of Materials Processing Technology, 212 (2012), 402–407, https://doi.org/10.1016/j.jmatprotec.2011.09.023

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Venkata Sarath Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreenu, A.V., Rao, M.J., sri, T.Y. et al. Copper–Nickel Alloy Friction Surfaced Coating on Steel Substrates for Marine Applications. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03291-2

Keywords

Navigation