Skip to main content
Log in

Development and Analysis of an Ultrathin, Compact Pentamerous Metamaterial Absorber

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This study presents a novel, ultrathin, and compact pentamerous metamaterial absorber (PMA) designed for versatile applications across the electromagnetic spectrum. This design offers significant advantages over traditional absorbers, including enhanced tunability, reduced thickness, and improved absorption efficiency. The design of the PMA unit cell is relatively ultrathin and for various penta-band applications. This work emphasizes a 5 × 5 mm2 area unit cell and a substrate of 1 mm thick. The properties of the proposed design were simulated in high-frequency structure simulator (ANSYS HFSS) software and compared with the experimental results obtained from Vector Network Analyzer post-fabrication of unit cell PMA. The relative error attained between simulated and experimental findings was less than 2.1%. The absorption peaks of this design were found to be nearly perfect absorption, specifically at 10.39, 12.78, 21.00, 24.27, and 30.40 GHz frequencies with absorptivity ratios of almost 99.99%, 98.50%, 88.00%, 92.80%, and 93.70%, respectively, through mathematical deliberation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The details that were used to create this manuscript is confidential. It is stored by the authors, and anyone who wants them can get it by sending an email request asha.nit123@gmail.com.

References

  1. Dede E M, Zhou F, Schmalenberg P, and Nomura T, J Electron Packag Trans ASME 140 (2018) 1. https://doi.org/10.1115/1.4039020

    Article  CAS  Google Scholar 

  2. Salim A, and Lim S, Sensors (2018). https://doi.org/10.3390/s18010232

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu X, Hu J, Zhang H, Di B, Bian K, and Song L, IEEE Trans Wirel Commun 22 (2023) 2462. https://doi.org/10.1109/TWC.2022.3211610

    Article  Google Scholar 

  4. Nooraiepour A, Vosoughitabar S, Wu C T M, Bajwa W U, and Mandayam N B, Adv Intell Syst (2023). https://doi.org/10.1002/aisy.202300341

    Article  Google Scholar 

  5. Parameswari S, and Chitra C, Int J Antennas Propag (2021). https://doi.org/10.1155/2021/5855626

    Article  Google Scholar 

  6. Ramachandran T, Faruque M R I, Ahamed E, and Abdullah S, Res Phys 15 (2019) 102668. https://doi.org/10.1016/j.rinp.2019.102668

    Article  Google Scholar 

  7. Md Ali S A, Abu M, and Zabri S N, Int J Integr Eng 12 (2020) 72. https://doi.org/10.30880/ijie.2020.12.01.007

    Article  Google Scholar 

  8. Smolyaninov I I, and Smolyaninova V N, Nanophotonics 7 (2018) 795. https://doi.org/10.1515/nanoph-2017-0115

    Article  CAS  Google Scholar 

  9. Kang Y, Zhang J, Liu H, He Y, and Zhang J, Res Phys 27 (2021) 104525. https://doi.org/10.1016/j.rinp.2021.104525

    Article  Google Scholar 

  10. Zhu H, Yi F, and Cubukcu E, Nat Photonics 10 (2016) 709. https://doi.org/10.1038/nphoton.2016.183

    Article  ADS  CAS  Google Scholar 

  11. Ye Q, Liu Y, Lin H, Li M, and Yang H, Appl Phys A Mater Sci Process 107 (2012) 155. https://doi.org/10.1007/s00339-012-6796-7

    Article  ADS  CAS  Google Scholar 

  12. Lee H M, and Lee H S, Int J Antennas Propag (2012). https://doi.org/10.1155/2012/859429

    Article  Google Scholar 

  13. Tang J, Xiao Z, Xu K, Ma X, and Wang Z, Plasmonics 11 (2016) 1393. https://doi.org/10.1007/s11468-016-0189-2

    Article  CAS  Google Scholar 

  14. Wahidi M S, Mustafa M E, and Tahir F A, J Appl Phys (2019). https://doi.org/10.1063/1.5067355

    Article  Google Scholar 

  15. Mulla B, and Sabah C, Phys E Low-Dimens Syst Nanostruct 86 (2017) 44. https://doi.org/10.1016/j.physe.2016.10.003

    Article  ADS  CAS  Google Scholar 

  16. Zhang Y, Yi Z, Wang X, Chu P, Yao W, Zhou Z, Cheng S, Liu Z, Wu P, Pan M, and Yi Y, Phys E Low-Dimens, Syst Nanostruct 127 (2021) 114526. https://doi.org/10.1016/j.physe.2020.114526

    Article  CAS  Google Scholar 

  17. Xiang T, Lei T, Huang X, Shen Z, and Yang H, Appl Phys Express 11 (2018) 117302. https://doi.org/10.7567/APEX.11.117302

    Article  ADS  Google Scholar 

  18. Asgharian R, Zakeri B, and Karimi O, AEU: Int J Electron Commun 87 (2018) 119. https://doi.org/10.1016/j.aeue.2018.02.013

    Article  Google Scholar 

  19. Moniruzzaman M, Islam M T, Muhammad G, Singh M S J, and Samsuzzaman M, Res Phys 19 (2020) 103467. https://doi.org/10.1016/j.rinp.2020.103467

    Article  Google Scholar 

  20. Garg P, and Jain P, AEU: Int J Electron Commun 116 (2020) 153063. https://doi.org/10.1016/j.aeue.2020.153063

    Article  Google Scholar 

  21. Wu H, Ji S, Zhao J, Luo Z, and Dai H, J Electromagn Waves Appl 36 (2022) 1273. https://doi.org/10.1080/09205071.2021.2020690

    Article  Google Scholar 

  22. Sood D, and Tripathi C C, J Electromagn Waves Appl 31 (2017) 394. https://doi.org/10.1080/09205071.2017.1288172

    Article  Google Scholar 

  23. Varadhan C, Arulselvi S, and Ashine Chamatu F, Adv Mater Sci Eng (2021). https://doi.org/10.1155/2021/8475621

    Article  Google Scholar 

  24. Tran C M, Van Pham H, Nguyen H T, Nguyen T T, Vu L D, and Do T H, Plasmonics 14 (2019) 1587. https://doi.org/10.1007/s11468-019-00953-6

    Article  Google Scholar 

  25. Kalraiya S, Chaudhary R K, and Abdalla M A, AEU: Int J Electron Commun 143 (2022) 154033. https://doi.org/10.1016/j.aeue.2021.154033

    Article  Google Scholar 

  26. Li L-Y, Wang J, Du H-L, Wang J-F, and Qu S-B, Chinese Phys B 24 (2015) 64201. https://doi.org/10.1088/1674-1056/24/6/064201

    Article  Google Scholar 

  27. Ji S, Jiang C, Zhao J, Zhang X, and He Q, Opt Commun 432 (2019) 65. https://doi.org/10.1016/j.optcom.2018.09.040

    Article  ADS  CAS  Google Scholar 

  28. Deng G, et al., Nanoscale Res Lett (2020). https://doi.org/10.1186/s11671-020-03448-0

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zeng X, Zhang L, Wan G, Gao M, and Hu B, IET Conf Publ (2018). https://doi.org/10.1049/cp.2018.0555

    Article  Google Scholar 

  30. Bhattacharya A, Bhattacharyya S, Ghosh S, Chaurasiya D, and Vaibhav Srivastava K, Microw Opt Technol Lett 57 (2015) 2519. https://doi.org/10.1002/mop.29365

    Article  Google Scholar 

Download references

Funding

This research did not get any funds from outside sources.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AV (AV); methodology, AV; software, AV; validation, AV and OPM (OM); formal analysis, AV; writing—original draft preparation, AV; Reviewing, OM; supervision, OM; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Asha Verma.

Ethics declarations

Conflicts of interest

The authors state that there is no conflict in their work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Meena, O.P. Development and Analysis of an Ultrathin, Compact Pentamerous Metamaterial Absorber. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03275-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03275-2

Keywords

Navigation