Skip to main content
Log in

Ti2SnC MAX Phase Directly Synthesized by High-Temperature Ball Milling

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

For the first time, Ti2SnC powder was directly fabricated by high-temperature ball milling with Sn, Ti, and graphite as reactants and was compared with Ti2SnC formation by mechanical alloying and thermal treatment. Phase changes and microstructure of powder samples during milling and thermal treatment were evaluated by X-ray diffraction, high-resolution scanning electron microscopy, and transition electron microscopy. Results presented that TiC, Ti6Sn5, and Ti5Sn3 formed after 40 h of traditional milling, and finally, Ti2SnC with some impurities like TiC formed after thermal treatment. Because of the high-temperature ball milling, Ti5Sn3 and TiC were formed after 5 h of milling. When milling time reached 10 h, TiC and Ti5Sn3 reacted together and Ti2SnC was formed. According to the present work, the Ti2SnC formed at a lower temperature and time of milling in comparison to conventional mechanical alloying and heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tang J, Zhang P, Liu Y, Lu C, Zhang Y, He W, Tian W, Zhang W, and Sun Z, J Mater Sci Technol 54 (2020) 206–210.

    CAS  Google Scholar 

  2. Li S, Zhang L, Yu W, and Zhou Y, Ceram Int 43 (2017) 6963.

    CAS  Google Scholar 

  3. Liao D, Zhu S-P, Keshtegar B, Qian G, and Wang Q, Int J Mech Sci 181 (2020) 105685.

    Google Scholar 

  4. Cao Y, Zarezadeh Mehrizi M, Rajhi A A, Alamri S, and Anqi A E, Ceram Int 48 (2022) 2415.

    CAS  Google Scholar 

  5. Zarezadeh Mehrizi M, and Beygi R, J Alloys Compd 740 (2018) 118.

    CAS  Google Scholar 

  6. Fattahi M, and Zarezadeh Mehrizi M, Mater Today Commun 25 (2020) 101623.

    CAS  Google Scholar 

  7. Niu X, Zhu S-P, He J-C, Liao D, Correia J A F O, Berto F, and Wang Q, Int J Fatigue 160 (2022) 106884.

    CAS  Google Scholar 

  8. Li X-K, Zhu S-P, Liao D, Correia J A F O, Berto F, and Wang Q, Int J Fatigue 159 (2022) 106788.

    CAS  Google Scholar 

  9. Jeitschko W, Nowotny H, and Benesovsky F, J Less Common Metals 7 (1964) 133.

    CAS  Google Scholar 

  10. Barsoum M W, Yaroschuk G, and Tyagi S, Scr Mater 37 (1997) 1583.

    CAS  Google Scholar 

  11. Liu Y, Lu C, Zhang P, Yu J, Zhang Y, and Sun Z M, Acta Mater 185 (2020) 433.

    CAS  Google Scholar 

  12. Ding J, Tian W, Wang D, Zhang P, Chen J, Zhang Y, and Sun Z, J Alloys Compd 785 (2019) 1086.

    CAS  Google Scholar 

  13. Fu Z H, Yang B J, Shan M L, Li T, Zhu Z Y, Ma C P, Zhang X, Gou G Q, Wang Z R, and Gao W, Corros Sci 164 (2020) 108337.

    CAS  Google Scholar 

  14. Zhu Z Y, Liu Y L, Gou G Q, Gao W, and Chen J, Sci Rep 11 (2021) 10020.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao S, Li H, Huang H, and Kang R, Appl Surf Sci 599 (2022) 153982.

    CAS  Google Scholar 

  16. Kuang W, Wang H, Li X, Zhang J, Zhou Q, and Zhao Y, Acta Mater 159 (2018) 16.

    CAS  Google Scholar 

  17. Li S, Bei G, Chen X, Zhang L, Zhou Y, Mačković M, Spiecker E, and Greil P, J Eur Ceram Soc 36 (2016) 25.

    Google Scholar 

  18. El-Raghy T, Chakraborty S, and Barsoum M W, J Eur Ceram Soc 20 (2000) 2619.

    CAS  Google Scholar 

  19. Xie J, Chen Y, Yin L, Zhang T, Wang S, and Wang L, J Manuf Process 64 (2021) 473.

    Google Scholar 

  20. Yuhua C, Yuqing M, Weiwei L, and Peng H, Opt Laser Technol 91 (2017) 197.

    Google Scholar 

  21. Zhu Q, Chen J, Gou G, Chen H, and Li P, J Mater Process Technol 246 (2017) 267.

    Google Scholar 

  22. Tian X, Zhao Y, Gu T, Guo Y, Xu F, and Hou H, Mater Sci Eng: A 849 (2022) 143485.

    CAS  Google Scholar 

  23. Wang J, Pan Z, Wang Y, Wang L, Su L, Cuiuri D, Zhao Y, and Li H, Addit Manuf 34 (2020) 101240.

    CAS  Google Scholar 

  24. Li S-B, Bei G-P, Zhai H-X, and Zhou Y, Mater Lett 60 (2006) 3530.

    CAS  Google Scholar 

  25. Ding J, Zhang P, Tian W B, Shi J, Zhang M, Zhang Y M, and Sun Z M, J Alloys Compd 695 (2017) 2850.

    CAS  Google Scholar 

  26. Guo K, Gou G, Lv H, Shan M, Coatings, 2022

  27. Chen Y, Sun S, Zhang T, Zhou X, and Li S, Mater Sci Eng: A 771 (2020) 138545.

    CAS  Google Scholar 

  28. Yeh C L, and Kuo C W, J Alloys Compd 502 (2010) 461.

    CAS  Google Scholar 

  29. He H T, Fang J X, Wang J X, Sun T, Yang Z, Ma B, Chen H T, and Wen M, Int J Refract Metals Hard Mater 116 (2023) 106349.

    CAS  Google Scholar 

  30. Lapauw T, Vanmeensel K, Lambrinou K, and Vleugels J, J Alloys Compd 631 (2015) 72.

    CAS  Google Scholar 

  31. Zhao P, Zhu J, Yang K, Li M, Shao G, Lu H, Ma Z, Wang H, and He J, Appl Surf Sci 616 (2023) 156516.

    CAS  Google Scholar 

  32. Wang K, Zhu J, Wang H, Yang K, Zhu Y, Qing Y, Ma Z, Gao L, Liu Y, Wei S, Shu Y, Zhou Y, and He J, J Adv Ceram 11 (2022) 1571.

    Google Scholar 

  33. Vincent H, Vincent C, Mentzen B F, Pastor S, and Bouix J, Mater Sci Eng: A 256 (1998) 83.

    Google Scholar 

  34. Li S-B, Bei G-P, Zhai H-X, Zhou Y, and Li C-W, Mater Sci Eng: A 457 (2007) 282.

    Google Scholar 

  35. Zarezadeh Mehrizi M, Mostaan H, Beygi R, Rafiei M, and Abbasian A R, Rus J Non-Ferr Metals 59 (2018) 117.

    Google Scholar 

  36. Zarezadeh Mehrizi M, Shamanian M, and Saidi A, Ceram Int 40 (2014) 9493.

    CAS  Google Scholar 

  37. Zhou C, Ren Z, Lin Y, Huang Z, Shi L, Yang Y, and Mo J, Mech Syst Signal Process 189 (2023) 110117.

    Google Scholar 

  38. Zhang H, Xiao Y, Xu Z, Yang M, Zhang L, Yin L, Chai S, Wang G, Zhang L, and Cai X, Intermetallics 150 (2022) 107683.

    CAS  Google Scholar 

  39. Zarezadeh Mehrizi M, Saidi A, and Shamanian M, Mater Sci Technol 27 (2011) 1465.

    Google Scholar 

  40. Shahbazkhan A, Sabet H, and Abbasi M, J Alloys Compd 896 (2022) 163041.

    CAS  Google Scholar 

  41. Guo H, Zhang J, J Appl Mech, 90 (2023)

  42. Hu J, Yang K, Wang Q, Zhao Q C, Jiang Y H, and Liu Y J, Int J Fatigue 178 (2024) 108013.

    CAS  Google Scholar 

  43. Arora A, and Mula S, J Alloys Compd 899 (2022) 163336.

    CAS  Google Scholar 

  44. Pradeep N B, Hegde M M R, Manjunath Patel G C, Giasin K, Pimenov D Y, and Wojciechowski S, J Mater Res Techno 16 (2022) 88.

    CAS  Google Scholar 

  45. Xie B, Li H, Ning Y, and Fu M, Mater Design 231 (2023) 112041.

    CAS  Google Scholar 

  46. Atazadeh N, Saeedi Heydari M, Baharvandi H R, and Ehsani N, Int J Refract Metals Hard Mater 61 (2016) 67.

    CAS  Google Scholar 

  47. Istomin P, Nadutkin A, and Grass V, Mater Chem Phys 162 (2015) 216.

    CAS  Google Scholar 

  48. Chen C-C, Huang T-Y, and Wu H-Z, Mater Chem Phys 133 (2012) 1137.

    CAS  Google Scholar 

  49. Jia L, Shao Z, Lü Q, Tian Y, and Han J, Ceram Int 40 (2014) 739.

    CAS  Google Scholar 

  50. Chen D, Liu B, Xu W, Zhang C, Guo E, Lu J, Sun G, Pan Y, Zhang J, and Lu X, Adv Powder Technol 33 (2022) 103803.

    CAS  Google Scholar 

  51. Liu M, Chen J, Li B, Wang B, Han Q, Wei S, Liu K, and He X, Mater Res Bull 161 (2023) 112170.

    CAS  Google Scholar 

  52. Bei G-P, Li S-B, Zhai H-X, and Zhou Y, Mater Res Bull 42 (2007) 1995.

    CAS  Google Scholar 

  53. Jo Y H, Jung I, Choi C S, Kim I, and Lee H M, Nanotechnology 22 (2011) 225701.

    PubMed  Google Scholar 

  54. Colinet C, Tedenac J-C, and Fries S G, Calphad 33 (2009) 250.

    CAS  Google Scholar 

  55. Azmat A, Tufail M, Chandio AD, Materials, 14 (2021)

  56. Itoh S, Inoue Y, Mater Trans, advpub (2011) 1102281314

  57. Guan C L, Liu G Q, and Shan Y C, Adv Mater Res 412 (2012) 187.

    CAS  Google Scholar 

  58. Wang J, Shao Z, and Ru H, Ceram Int 40 (2014) 6979.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zarezadeh Mehrizi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, E., Hussein, S.A., Karim, M.M. et al. Ti2SnC MAX Phase Directly Synthesized by High-Temperature Ball Milling. Trans Indian Inst Met 77, 1729–1737 (2024). https://doi.org/10.1007/s12666-024-03273-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-024-03273-4

Keywords

Navigation