Skip to main content
Log in

Influence of TiO2 on Intragranular Acicular Ferrite Nucleation in Low-Carbon Steel

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Oxide metallurgy technology uses inclusion to induce Intragranular acicular ferrite (IAF). The purpose is to refine the steel’s organization and improve its strength. However, the mechanism that inclusion induces IAF nucleation is still unclear. To solve this problem, we added TiO2 into the low-carbon steel to investigate the ferrite nucleation mechanism induced by Ti inclusions by SEM, TEM, and EPMA. The results show that TiO2 was added to the molten steel to form composite inclusions TiN–MnS–3MnO·Al2O3·3SiO2–Ti3O5 by temperature control. These inclusions are effective in inducing IAF nucleation. It is consistent with the depletion zone mechanism and low mismatch degree mechanism. It is attributed to MnS inclusions in the composite inclusions and Mn elements in the solute poverty zone. The mismatch strain between TiN–MnS–3MnO·Al2O3·3SiO2–Ti3O5 and IAF is less than 6%. The in-depth study of the mechanism of induced IAF nucleation by containing Ti inclusions is conducive to promoting the progress of oxide metallurgy technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Turkdogan E T, Ignatowicz S, and Pearson J, J Iron Steel Res 180 (1955) 349.

    CAS  Google Scholar 

  2. Liang W, Geng R, Zhi J, Li J, and Huang F, Materials 15 (2022) 1350.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Takashi S, Masamitsu W, Yoshiyuki U, and Shozo M, ISIJ Int 32 (1992) 169.

    Article  Google Scholar 

  4. Sawai T, Wakoh M, and Mizoguchi S, Tetsu-to-Hagané 82 (1996) 587.

    Article  CAS  Google Scholar 

  5. Koseki T, and Thewlis G, Mater Sci Tech 21 (2005) 867.

    Article  CAS  Google Scholar 

  6. Kang Y, Jeong S, Kang J H, and Lee C, Metall Mater Trans A 47 (2016) 2842.

    Article  CAS  Google Scholar 

  7. Byun J S, Shim J H, Suh J Y, Oh Y J, Cho Y W, and Shim J D, MSEA 319 (2001) 326.

    Article  Google Scholar 

  8. Pan Y T, and Lee J L, Mater Des 15 (1994) 331.

    Article  CAS  Google Scholar 

  9. Wang Y, Wang Q, and Mu W, Metals 13 (2023) 517.

    Article  Google Scholar 

  10. Homma H, Ohkita S, and Matsuda S, Weld J 66 (1987) 301.

    Google Scholar 

  11. Takahisa S, Junya I, and Toshihiko K, ISIJ Int 47 (2007) 847.

    Article  Google Scholar 

  12. Changjoon L, Shoichi N, Junya I, and Toshihiko K, ISIJ Int 51 (2011) 2036.

    Article  Google Scholar 

  13. Takada A, Komizo Y, Hidenori T, Tomoyuki Y, and Kenji O, Weld J 29 (2015) 254.

    Article  Google Scholar 

  14. Nambu S, Shibuta N, Ojima M, Inoue J, Koseki T, and Bhadeshia H, Acta Mater 61 (2013) 4831.

    Article  ADS  CAS  Google Scholar 

  15. Mu W, Hedström P, and Shibata H, JOM 70 (2018) 2283.

    Article  CAS  Google Scholar 

  16. Yamamoto K, Hasegawa T, and Takamura J I, ISIJ Int 6 (1996) 80.

    Article  Google Scholar 

  17. Shogo K, Akira N, Kentaro O, and Ken K, Trans Iron Steel Inst Jpn 16 (1976) 486.

    Article  Google Scholar 

  18. Huang Q, Wang X, Jiang M, Hu Z, and Yang C, Steel Res Int 87 (2016) 445.

    Article  CAS  Google Scholar 

  19. Xiong Z H, Liu S L, Wang X M, Shang C J, Li X C, and Misra R D K, Mater. Sci. Eng. A 636 (2015) 117.

    Article  CAS  Google Scholar 

  20. Sh G, Zhao H, Zhang S, Wang Q, and Zhang F, Mater Sci Eng A-Struct 769 (2020) 769.

    Google Scholar 

  21. Grong O, Kolbeinsen L, Eijk C V, and Tranell G, ISIJ Int 46 (2006) 824.

    Article  CAS  Google Scholar 

  22. Byun J S, Shim J H, Cho Y W, and Lee D N, Acta Mater 51 (2003) 1593.

    Article  ADS  CAS  Google Scholar 

  23. Hou Y, and Cheng G, Metall Mater Trans B 50 (2019) 1351.

    Article  CAS  Google Scholar 

  24. Wang X, Shu W, and Zheng C, J Univ Sci Technol Beijing 33 (2011) 958.

    CAS  Google Scholar 

  25. Song B, Mao J H, Li Y, Wang F, and Luo Z, Steel Res Int 08 (2008) 12.

    Google Scholar 

  26. Sasaki M, Ohsasa K, Kudoh M, and Matsuura K, ISIJ Int 48 (2008) 340.

    Article  CAS  Google Scholar 

  27. Li X, Wu L, Ma L, and Yan X, Mech Adv Mater Struct 26 (2019) 866.

    Article  Google Scholar 

  28. Jiang M, Wang X H, and Pak J J, Metall Mater Trans B 45 (2014) 1656.

    Article  CAS  Google Scholar 

  29. Jantzen T, Hack K, Yazhenskikh E, and Müller M, Calphad 62 (2018) 187.

    Article  CAS  Google Scholar 

  30. Wu M, Ren C, Ren Y, and Zhang L, Metall Mater Trans B 54 (2023) 1159.

    Article  CAS  Google Scholar 

  31. Zheng D, Ma G, Zhang X, Liu M, and Li Z, J Iron Steel Res Int 28 (2021) 1605.

    Article  CAS  Google Scholar 

  32. Cai Z, Zhou Y, Tong L, Yue Q, and Kong H, Mater Test 57 (2015) 649.

    Article  ADS  CAS  Google Scholar 

  33. Yang Y, Zhan D, and Lei H, Metall Mater Trans B 51 (2020) 480.

    Article  CAS  Google Scholar 

  34. Wang R, Yang J, and Xu L, Metals 8 (2018) 946.

    Article  CAS  Google Scholar 

  35. Noman M T, Ashraf M A, and Ali A, Environ Sci Pollut Res 26 (2019) 3262.

    Article  CAS  Google Scholar 

  36. Qiuping L, Qingjun Z, and Liguang Z, Mater Rep 36 (Z1), (2022) 21040258.

    Google Scholar 

  37. Sun W P, Militzer M, and Jonas J J, Metall Trans 23A (1992) 821.

    Article  CAS  Google Scholar 

  38. Fu S, Zhang Y, and Liu H Q, J Mater Sci Technol 34 (2018) 335.

    Article  CAS  Google Scholar 

  39. Liu G, Zhang P, Chong Y, Zhang J, and Sun J, Acta Metall Sin 57 (2021) 1484.

    CAS  Google Scholar 

  40. Bramfitt B L, Metall Trans 1 (1970) 2958.

    Article  Google Scholar 

  41. Zhang S, Nobuyuki H, Masato E, and Toshimi T, ISIJ Int 36 (1996) 1301.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuping Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Li, Q. & Li, A. Influence of TiO2 on Intragranular Acicular Ferrite Nucleation in Low-Carbon Steel. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03264-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03264-5

Keywords

Navigation