Skip to main content
Log in

Effects of Cr and W in TiMoNb Refractory High Entropy Alloys

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This study focuses on synthesizing and characterizing mechanically alloyed refractory high entropy alloys (RHEA) containing TiMoNb, Cr, W, and Cr + W. Analytical techniques including XRD, SEM, EDX, DTA, and TGA were employed to explore the influence of Cr and W on the alloys' structure, morphology, and thermal stability towards oxidation. XRD analysis confirmed the formation of a single-phase bcc solid solution in TiMoNbCr, TiMoNbW, and TiMoNbCrW alloys. Crystallite size decreased as milling progressed, yielding average sizes of approximately 7.2 nm, 7.4 nm, and 9.7 nm, with lattice strains of 1.143%, 1.148%, and 1.15%, respectively. Both experimental and calculated values of lattice parameters converged to around 3.1685 ± 0.002 and 3.1791 ± 0.010 Å for all three alloys. The synergy of Cr and W in TiMoNb was observed for the first time, impacting dislocation density, hardness, and oxidation stability. TiMoNbCrW exhibited reduced dislocation density and the highest hardness (502 HV). TGA indicated enhanced oxidation resistance up to 400 °C for TiMoNbCrW compared to the most vulnerable TiMoNbCr alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, and Chang S Y, Adv Mater Sci 6 (2004) 299. https://doi.org/10.1002/adem.200300567.

    Article  CAS  Google Scholar 

  2. Shi Y, Yang B, Xie X, Brechtl J, Dahmen K A, and Liaw P K, Corros Sci 119 (2017) 33. https://doi.org/10.1016/j.corsci.2017.02.019.

    Article  CAS  Google Scholar 

  3. Murthy B S, Yeh J W, Ranganathan S, and Bhattacharjee P P, High-Entropy Alloys, 2nd edn, Elsevier (2019, 2020) p 388, Paperback ISBN: 9780128160671.

  4. Zhu C, Li Z, Hong C, Dai P, and Chen J, Int J Refract Met Hard Mater 93 (2020) 105357. https://doi.org/10.1016/j.ijrmhm.2020.105357.

    Article  CAS  Google Scholar 

  5. Miracle D B, and Senkov O N, Acta Mater 122 (2017) 448. https://doi.org/10.1016/j.actamat.2016.08.081.

    Article  ADS  CAS  Google Scholar 

  6. Zhao Y J, Qiao J W, Ma S G, Gao M C, Yang H J, Chen M W, and Zhang Y, Mater Des 96 (2016) 10. https://doi.org/10.1016/j.matdes.2016.01.149.

    Article  CAS  Google Scholar 

  7. Poulia A, Georgatis E, Lekatou A, and Karantzalis A E, Int J Refract Met Hard Mater 57 (2016) 50. https://doi.org/10.1016/j.ijrmhm.2016.02.006.

    Article  CAS  Google Scholar 

  8. Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, and Lu Z P, Prog Mater 61 (2014) 1. https://doi.org/10.1016/j.pmatsci.2013.10.001.

    Article  ADS  CAS  Google Scholar 

  9. Tian Y Z, Sun S J, Lin H R, and Zhang Z F, Mater Sci 35 (2019) 334. https://doi.org/10.1016/j.jmst.2018.09.068.

    Article  CAS  Google Scholar 

  10. Ye Y F, Wang Q, Lu J, Liu C T, and Yang Y, Mater Today 19 (2016) 349. https://doi.org/10.1016/j.mattod.2015.11.026.

    Article  CAS  Google Scholar 

  11. Tsai M-H, and Yeh J-W, Mater Res Lett 2 (2014) 107. https://doi.org/10.1080/21663831.2014.912690.

    Article  CAS  Google Scholar 

  12. Senkov O N, Wilks G B, Scott J M, and Miracle D B, Intermet 19 (2011) 698. https://doi.org/10.1016/j.intermet.2011.01.004.

    Article  CAS  Google Scholar 

  13. Senkov O N, Wilks G B, Miracle D B, Chuang C P, and Liaw P K, Intermet 18 (2010) 1758. https://doi.org/10.1016/j.intermet.2010.05.014.

    Article  CAS  Google Scholar 

  14. Han Z D, Chen N, Zhao S F, Fan L W, Yang G N, Shao Y, and Yao K F, Intermet 84 (2017) 153. https://doi.org/10.1016/j.intermet.2017.01.007.

    Article  CAS  Google Scholar 

  15. Couzinié J P, Dirras G, Perriére L, Chauveau T, Leroy E, Champion Y, and Guillot I, Mater Lett 126 (2014) 285. https://doi.org/10.1016/j.matlet.2014.04.062.

    Article  CAS  Google Scholar 

  16. Senkov O N, Senkova S V, and Woodward C, Acta Mater 68 (2014) 214. https://doi.org/10.1016/j.actamat.2014.01.029.

    Article  ADS  CAS  Google Scholar 

  17. Zhao S F, Yang G N, Ding H Y, and Yao K F, Intermet 61 (2015) 47. https://doi.org/10.1016/j.intermet.2015.02.011.

    Article  CAS  Google Scholar 

  18. Yao H W, Qiao J W, Gao M C, Hawk J A, Ma S G, Zhou H F, and Zhang Y, Mater Sci Eng A 674 (2016) 203. https://doi.org/10.1016/j.msea.2016.07.102.

    Article  CAS  Google Scholar 

  19. Senkov O N, Scott J M, Senkova S V, Miracle D B, and Woodward C F, J Alloy Compd 509 (2011) 6043. https://doi.org/10.1016/j.jallcom.2011.02.171.

    Article  CAS  Google Scholar 

  20. Wang S-P, and Xu J, Mater Sci Eng 73 (2017) 80. https://doi.org/10.1016/j.msec.2016.12.057.

    Article  CAS  Google Scholar 

  21. Yurchenko N Y, Stepanov N D, Zherebtsov S V, Tikhonovsky M A, and Salischchev G A, Mater Sci Eng 704 (2017) 82. https://doi.org/10.1016/j.msea.2017.08.019.

    Article  CAS  Google Scholar 

  22. Senkov O N, Senkova S V, Miracle D B, and Woodward C, Mater Sci Eng 565 (2013) 51. https://doi.org/10.1016/j.actamat.2012.11.032.

    Article  CAS  Google Scholar 

  23. Senkov O N, and Woodward C F, Mater Sci Eng 529 (2011) 311. https://doi.org/10.1016/j.msea.2011.09.033.

    Article  CAS  Google Scholar 

  24. Long Y, Liang X, Su K, Peng H, and Li X, J Alloy Compd 780 (2019) 607. https://doi.org/10.1016/j.jallcom.2018.11.318.

    Article  CAS  Google Scholar 

  25. Takeuchi A, and Inoue A, Mater Trans 46 (2005) 2817. https://doi.org/10.2320/matertrans.46.2817.

    Article  CAS  Google Scholar 

  26. Liu L, Liu H, Zhang X, Wang Y, and Hao X, Materials 16 (2023) 3860. https://doi.org/10.3390/ma16103860.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Das S, and Robi P S, Int J Refract Metals Hard Mater 100 (2021) 105656. https://doi.org/10.1016/j.ijrmhm.2021.105656.

    Article  CAS  Google Scholar 

  28. Williamson G K, and Hall W H, Acta Metall 1 (1953) 22. https://doi.org/10.1016/0001-6160(53)90006-6.

    Article  CAS  Google Scholar 

  29. Rasband W, Natl Inst Health USA 8 (2014), https://doi.org/10.4236/ajps.2017.87117.

  30. Suryanarayana C, Prog Mater Sci 46 (2001) 1, in English.

    Article  CAS  Google Scholar 

  31. Shivam V, Basu J, Pandey V K, Shadangi Y, and Mukhopadhyay N K, Adv Powder Technol 29 (2018) 2221. https://doi.org/10.1016/j.apt.2018.06.006.

    Article  CAS  Google Scholar 

  32. Avar B, Chattopadhyay A K, Simsek T, Simsek T, Ozcan S, and Kalkan B, Appl Phys 128 (2022) 537.

    Article  CAS  Google Scholar 

  33. Guo J, Tang C, and Lai H S, Mater 15 (2022) 1444. https://doi.org/10.3390/ma15041444.

    Article  CAS  Google Scholar 

  34. Javdan M, Gheisari Kh, and Reihanian M, J Alloy Compd 952 (2023) 170030. https://doi.org/10.1016/j.jallcom.2023.170030, in English.

    Article  CAS  Google Scholar 

  35. Jahani N, Reihanian M, and Gheisari K, Mater Sci Technol (2023), in English. https://doi.org/10.1080/02670836.2023.2180902.

    Article  Google Scholar 

  36. Zhang Y, Zhou Y J, Lin J P, Chen G L, and Liaw P K, Adv Eng Mater 10 (2008) 534. https://doi.org/10.1002/adem.200700240.

    Article  CAS  Google Scholar 

  37. Yang X, and Zhang Y, Mater Chem Phys 2 (2012) 132. https://doi.org/10.1016/j.matchemphys.2011.11.021.

    Article  CAS  Google Scholar 

  38. Wang Z, Li H J, Zhang L L, and Pu Y P, Mater Res Bull 53 (2014) 28. https://doi.org/10.1016/j.materresbull.2014.01.025.

    Article  CAS  Google Scholar 

  39. Guo S, Ng C, Lu J, and Liu C T, J App Phys 109 (2011) 103505. https://doi.org/10.1063/1.3587228.

    Article  ADS  CAS  Google Scholar 

  40. Shivam V, Sanjana V, and Mukhopadhyay N K, Trans Indian Inst Met 73 (2020) 821. https://doi.org/10.1007/s12666-020-01892-1.

    Article  CAS  Google Scholar 

  41. Shivam V, Basu J, Shadangi Y, Singh M K, and Mukhopadhyay N K, J Alloy Compd 757 (2018) 87. https://doi.org/10.1016/j.jallcom.2018.05.057.

    Article  CAS  Google Scholar 

  42. Singh N, Shadangi Y, Goud G S, Pandey V K, Shivam V, and Mukhopadhyay N K, Trans Indian Inst Met 74 (2021) 2203. https://doi.org/10.1007/s12666-021-02262-1.

    Article  CAS  Google Scholar 

  43. Hull D, and Bacon D J, Introduction to Dislocations, 5th edn, Elsevier, Oxford (2011), Paperback ISBN: 9780080966724.

  44. Davis R, Metall 8 (1978) 41. https://doi.org/10.1007/BF02881476.

    Article  Google Scholar 

  45. Moffat D, and Kattner U, Metall (1988) 2389, https://doi.org/10.1007/BF02645466.

  46. Bönisch M, Calin M, Waitz T, Panigrahi A, Zehetbauer M, Gebert A, Skrotzki W, and Eckert J, Sci Tech Adv Mater 14 (2013), https://doi.org/10.1088/1468-6996/14/5/055004.

Download references

Author information

Authors and Affiliations

Authors

Contributions

TS: performed the experiments, data analysis, writing the first and final draft of manuscript, editing, reviewing, supervision, MAK: performed the experiments, data analysis, BA: writing the first draft of manuscript, data analysis, editing, reviewing, SHG: performed the experiments and characterizations of the thermal analysis, İD: hardness analysis were achieved, AKC: reviewing, data analysis, editing, writing the final draft of manuscript.

Corresponding author

Correspondence to Tuncay Simsek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simsek, T., Kurtulus, A., Avar, B. et al. Effects of Cr and W in TiMoNb Refractory High Entropy Alloys. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-023-03259-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-023-03259-8

Keywords

Navigation