Skip to main content
Log in

Corrosion Mechanism of Three-Dimensional Network Configuration SiC–Fe Composites in Deep Mine Environment

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

With the development and depletion of shallow coal resources, deep coal mining has gradually become normalized. In the face of increasingly severe corrosion environment of coal mining, it is urgent to develop new materials with excellent corrosion resistance for key parts of coal mining equipment. In this paper, SiC, Al2O3 and SiO2 were used as raw materials to prepare three-dimensional network configuration SiC ceramics by organic foam impregnation method. Then the three-dimensional network configuration SiC-Fe composite was prepared by atmospheric pressure casting process. And by electrochemical test, static immersion corrosion test, scanning electron microscope and first-principles simulation calculation, the corrosion resistance of three-dimensional network configuration SiC-Fe composite in harsh mine water environment was characterized, meanwhile the corrosion resistance mechanism was analyzed. The results show that the corrosion potential increases from - 495.756 mV to -379.626 mV, and the corrosion current density decreases from 3.6864 μA/cm2 to 2.1709 μA/cm2 when the SiC ceramic reinforcement is added. The inhibition efficiency based on polarization curve measurement is increased by 41.11%. The charge transfer resistance increases from 5417 Ω·cm2 to 6437 Ω·cm2, and the capacitance value drops from 159.96 μF·cm−2 to 90.12 μF·cm−2. The inhibition efficiency based on electrochemical impedance spectroscopy is increased by 18.83%. First principles calculations show that the addition of SiC reinforcement showed a greater resistance in preventing the migration of corrosive media to the surface of the Fe substrate and can effectively slow down corrosion, which was consistent with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bin L, Xiang S, Chunwei L, Huang Z, and Zhang H, Fractal Fract 7 (2022) 45.

  2. Kunbo W, Junpeng Z, Yong J Y, Zhang X, and Wang C, Rock Mech Rock Eng 56 (2022) 779.

  3. Sławomir S, Int J Rock Mech Min Sci 148 (2021) 104972.

  4. Frith R, Reed G, and Jones A, Int J Min Sci Technol 30 (2020) 39.

  5. Adlane B, Xu Z, Xu X, Liang L, Han J, and Qiu G, Acta Geochimica 39 (2020) 85.

  6. Jiahui Y, Huaixin W, Zelin Q, Xu R, Wang Z, and He H, J Hydrol 617 (2023) 129023.

  7. Yang L, Ping L, Lei B, Li Q, Quan G, Zhuo Y, Han Y, and Wang Y, Sustainability 14 (2022) 9289.

  8. Jinhai L, Yanlin Z, Tao T, Zhang L, Zhu S, and Xu F, Int J Min Sci Technol 32 (2022) 513.

  9. Shen Q, Xiangyang L, Fu L, Mao H, Xiao B, Duan L, Shi Z, Wang G, and Yu R, Sci Total Environ 854 (2022) 158812.

  10. Zheng Z, Guoqing L, Xianbo S, Zhuang X, Wang L, Fu H, and Li L, Chemosphere 284 (2021) 131388.

  11. Younger P L, and Henderson R, Water Res 55 (2014) 74.

  12. Xiyu Z, Shuning D, Pengkang J, Liang J, Yang J, and Huang Y, Water 14 (2022) 3339.

  13. Christian W, Stefanie W, and Elke M, Resour Policy 79 (2022) 103035.

  14. Xu G G, Gu S C, Wang X D, Wang H, and Zhu S B, KSCE J Civil Eng 25 (2021) 4133.

  15. Xueda W, and Qi S, Constr Build Mater 304 (2021) 124637.

  16. Weizong B, Xinxin Y, Jie C, Xiang T, Zhou T, and Xie G, Int J Plast 162 (2023) 103530.

  17. Rui Z, Yupeng L, Yumeng S, Feng J, and Gong W, J Alloys Compd 940 (2023) 168906.

  18. Wang Y, Qin Y, Fu D, Chen H, Pan Y, Zhu C, and Yao F, Wear 458–459 (2020) 203397.

  19. Changlong W, Shuang C, Jie T, Fu D, Teng J, and Jiang F, Materials 16 (2023) 796.

  20. Weibin Z, Jialong C, Jing J, Qin L, Cao X, Wang Y, Wang X, and Meng C, Adv Compos Mater 31 (2022) 505.

  21. Ortiz-Roldan J M, Francisco M C, Elena G P, Calero S, Ruiz-Salvador A R, and Hamad S, Adv Compos Mater 31 (2022) 485.

  22. Ali K S S, Maziyar A, Adv Compos Mater 30 (2021) 517.

  23. Himoto I, Yamashita S, and Kita H, J Ceram Soc Jpn 127 (2019) 295.

  24. Jia R N, Tu T Q, Zheng K H, Jiao Z B, and Luo Z C, Mater Today Commun 29 (2021) 102906.

  25. Zhang Y, Song R, Pei Y, Wen E, and Zhao Z, J Alloys Compd 824 (2020) 153806.

  26. Wang J, Liu T, Zhou Y, Xing X, Liu S, Yang Y, and Yang Q, Surf Coat Technol 309 (2016) 1072.

  27. Bing D, Zongwei X, Changkun S, Zhang K, Zhang Y, Hua R, Zhao W, and Wang J, Opt Laser Technol 163 (2023) 109338.

  28. Huasong X, Bin G, Jie H, Lu Y, Chen H, Li L, Xie C, and Hu X M, Compos Sci Technol 236 (2023) 109984.

  29. Qixiang Z, Jisheng P, Zhijia Z, Xiang M, and Yan Q, Surf Interfaces 38 (2023) 102781.

  30. Siwei L, Zude F, Yongsheng L, Yang W, Zhang W, Cheng L, and Zhang L, Corros Sci 216 (2023).

  31. Zhongwei Z, Weijie L, Yuping Y, and Wu H, J Sandw Struct Mater 25 (2023) 462.

  32. Chenghu Z, Qianru Y, Xinpeng H, and Wei J, Int J Therm Sci 188 (2023) 108251.

  33. Amin M A, Corros Sci 52 (2010) 3243.

  34. Wang K, Lan A D, and Qiao J W, Front Mater 7 (2021) 533843.

  35. Isotahdon E, Huttunen-Saarivirta E, Heinonen S, Kuokkala V T, and Paju M, J Alloys Compd 626 (2015) 349.

  36. Li T, Swanson O J, Frankel G S, Gerard A Y, Lu P, Saal J E, and Scully J R, Electrochimica Acta 306 (2019) 71.

  37. Li C, Ma Y, Li Y, and Wang F, Corros Sci 53 (2011) 2549.

  38. Zhang Y, Li J, and Li J, J Alloys Compd 730 (2018) 458.

  39. Liqiang G, Hanguang F, and Xiaohui Z, Metals 13 (2023) 308.

  40. Li J F, Zheng Z Q, Ren W D, Chen W J, Zhao X S, and Li S C, Trans Nonferrous Met Soc China 16 (2006) 1268.

  41. Ansari K R, and Quraishi M A, J Ind Eng Chem 20 (2014) 2819.

  42. Bommersbach P, Alemany-Dumont C, Millet J P, and Normand B, Electrochimica Acta 51 (2005) 1076.

  43. Farag A A, and Hegazy M A, Corros Sci 74 (2013) 168.

  44. Otero T F, Rodríguez‐Jiménez J L, Martín H, Carro P, Krijer S M, and Hernandez‐Creus A, J Electrochem Soc 147 (2019) 4546.

  45. Benedeti A V, Sumodjo P T A, Nobe K, Cabot P L, and Proud W G, Electrochimica Acta 40 (1995) 2657.

  46. Liujie X, Fangfang W, Fugang L, Zhou Y, Chen C, and Wei S, Wear 476 (2021) 203655.

  47. Han P, Li W, Tian H, Gao X, Ding R, Xiong C, Song L, Zhang X, Wang W, and Chen C, Mater Chem Phys 214 (2018) 345.

Download references

Acknowledgements

This work was supported by The Tribology Science Fund of State Key Laboratory of Tribology (No. SKLTKF20B11), and supported by National Training Program of Innovation and Entrepreneurship for Undergraduates (No.202304058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Wang, F., Bai, Y. et al. Corrosion Mechanism of Three-Dimensional Network Configuration SiC–Fe Composites in Deep Mine Environment. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-023-03251-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-023-03251-2

Keywords

Navigation