Skip to main content
Log in

Investigation of the Doping and Withdrawal Speed Effect on the Properties of sol–gel Dip-coated Cu-Doped ZnO Thin Films

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Cu-doped ZnO nanofilms were prepared by sol–gel process using zinc acetate dihydrate, Copper (II) chloride dihydrate as a precursor and ethanol as solvent. The influence of Cu-doping concentration (2 wt%, 5 wt% and 7 wt%) and withdrawal speed of the dip coating process (20, 50 and 100 mm/min) on the structural, morphological and optical properties of the nanofilms have been investigated. The prepared films were characterized by x-ray diffraction (XRD), atomic force microscopy, scanning electron microscope (SEM), energy dispersive x-ray spectroscopy (EDS), and UV–visible. The XRD patterns show the typical hexagonal ZnO in the (002) plane, and the crystallite size of the doped film increases with the doping concentration and withdrawal speed. The SEM images show that the morphological surface of the films was affected by Cu doping. The successful doping of ZnO films with Cu was confirmed by the EDS analysis. The transmittance considerably decreases accompanying increase in the Cu concentration, and increases as the withdrawal speed increases from 20 to 100 mm/min. The optical band gap of pure and Cu-doped ZnO was found to decrease from 3.25 to 3.18 eV as the withdrawal speed increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen Y, IOP Conf Ser Mater Sci Eng 423 (2018) 012170. https://doi.org/10.1088/1757-899X/423/1/012170

  2. Fang Z, Tian S, Li B, Liu Q, Liu B, Zhao X, and Sankar G, Appl Surf Sci 540 (2021) 148414. https://doi.org/10.1016/j.apsusc.2020.148414

  3. Islam B, Sadiq M, Arif M, Haider F, and Ahmad N, Trans Indian Inst Met (2023). https://doi.org/10.1007/s12666-023-02989-z

    Article  Google Scholar 

  4. Boruah B D, Nanoscale Adv 1 (2019) 2059. https://doi.org/10.1039/c9na00130arsc.li/nanoscale-advances

    Article  Google Scholar 

  5. Galstyann V, Comini E, Baratto C, Faglia G, and Sberveglieri G, Ceram Int 41B (2015) 14239. https://doi.org/10.1016/j.ceramint.2015.07.052

    Article  CAS  Google Scholar 

  6. Zhao C Y, Liu Z R, Sun B, Tang J, Xu P S, Xie J C, and Phys E, Low-Dimensional Syst Nanostruct 41 (2009) 479. https://doi.org/10.1016/j.physe.2008.09.021

    Article  CAS  Google Scholar 

  7. Kathalingam A, and Kim H S, Opt Mater Express 8 (2018) 2832. https://doi.org/10.1364/OME.8.002832

    Article  CAS  Google Scholar 

  8. Valenzuela L, Faraldos M, Bahamonde A, and Rosal R, Curr Opin Chem Eng 34 (2021) 100762. https://doi.org/10.1016/j.coche.2021.100762

    Article  Google Scholar 

  9. Licurgo J S C, De Almeida Neto G R, and Paes Junior H R, Cerâmica 66 (2020) 284. https://doi.org/10.1590/0366-69132020663792877

    Article  CAS  Google Scholar 

  10. Thakur S, Sharma N, Varkia A, and Kumar J, Adv Appl Sci Res 5 (2014) 18.

    CAS  Google Scholar 

  11. Chauhan J, Shrivastav N, Dugaya A, and Pandey D, J Nanomed Nanotechnol 1 (2017) 26. https://doi.org/10.4172/2157-7439.1000429

  12. Chen G J, Jian S R, and Juang J Y, Coatings 8 (2018) 266. https://doi.org/10.3390/coatings8080266

    Article  CAS  Google Scholar 

  13. Tyona M D, Creat Commons Attrib License (2019). https://doi.org/10.5772/intechopen.86254

    Article  Google Scholar 

  14. Mhamdi A, Mimouni R, Amlouk A, Amlouk M, and Belgacem S, J Alloys Compd 610 (2014) 250. https://doi.org/10.1016/j.jallcom.2014.04.007

    Article  CAS  Google Scholar 

  15. Ray R, Kumar A, Paul A K, and Tyagi S, Trans Indian Inst Met 69 (2016) 1043. https://doi.org/10.1007/s12666-015-0618-5

    Article  CAS  Google Scholar 

  16. Lee J B, Le H J, Seo S H, and Park J S, Thin Solid Films 398 (2001) 641. https://doi.org/10.1016/S0040-6090(01)01332-3

    Article  Google Scholar 

  17. Pung S Y, Ong C S, Mohd Isha K, and Othman M H, Sains Malays 43 (2014) 273.

    CAS  Google Scholar 

  18. Bhubesh C J, and Chaudhri A K, ACS Omega 7 (2022) 21877. https://doi.org/10.1021/acsomega.2c02040

    Article  CAS  Google Scholar 

  19. Gupta V, and Mansingh A, J Appl Phys 80 (1996) 1063. https://doi.org/10.1063/1.362842

    Article  CAS  Google Scholar 

  20. Mathew J P, Varghese G, and Mathew J, SOP Trans Nano-technol 1 (2014) 1. https://doi.org/10.15764/NANO.2014.03001

    Article  Google Scholar 

  21. Langford J I, and Wilson A J C, J Appl Cryst 11 (1978) 102. https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  22. Srinivasulu T, Saritha K, and Reddy K T R, MoEM 3 (2017) 76. https://doi.org/10.1016/j.moem.2017.07.001

    Article  Google Scholar 

  23. Tsai C Y, Lai J D, Feng S W, Chen C H, and Tu L W, Superlattices Microstruct 111 (2017) 1073. https://doi.org/10.1016/j.spmi.2017.08.015

    Article  CAS  Google Scholar 

  24. Sharma P K, Dutta R K, and Pandey A C, J Magn Magn Mater 321 (2009) 4001. https://doi.org/10.1016/j.jmmm.2009.07.066

    Article  CAS  Google Scholar 

  25. Devi K R, Selvan G, Karunakaran M, Raj I L P, Ganesh V, and AlFaify S, Mater Sci Semicond Process 119 (2020) 105117. https://doi.org/10.1016/j.mssp.2020.105117

    Article  CAS  Google Scholar 

  26. Masashi O, Hiromitsu K, and Toshinobu Y, Thin Solid Films 306 (1997) 78. https://doi.org/10.1016/S0040-6090(97)00231-9

    Article  Google Scholar 

  27. Touam T, Atoui M, Hadjoub I, Chelouche A, Boudine B, Fischer A, Boudrioua A, and Doghmane A, Eur Phys J Appl Phys 67 (2014) 30302. https://doi.org/10.1051/epjap/2014140228

    Article  CAS  Google Scholar 

  28. Kaneva N V, and Dushkin C D, Bulg Chem Commus 43 (2011) 259.

    CAS  Google Scholar 

  29. Zegadi C, Abdelkebir K, Chaumont D, Adnane M, and Hamzaoui S, AMPC 4 (2014) 93.

    Article  CAS  Google Scholar 

  30. Tsay C Y, Cheng H C, Tung Y T, Tuan W H, and Lin C K, Thin Solid Films 517 (2008) 1032. https://doi.org/10.1016/j.tsf.2008.06.030

    Article  CAS  Google Scholar 

  31. Tneh S S, Hassan Z, Saw K G, Yam F K, and Hassan A H, Physica B 405 (2010) 2045. https://doi.org/10.1016/j.physb.2010.01.099

    Article  CAS  Google Scholar 

  32. Sreedhar A, Kwon J H, Yi J, Kim J S, and Gwag J S, Mater Sci Semicond Process 49 (2016) 8. https://doi.org/10.1016/j.mssp.2016.03.023

    Article  CAS  Google Scholar 

  33. Klein LC, Sol–Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes, Noyes Publications (1988) https://doi.org/10.1002/adma.19890010816

  34. Sinem A, Vacuum 120 (2015) 51. https://doi.org/10.1016/j.vacuum.2015.05.041

    Article  CAS  Google Scholar 

  35. Rio E, and Boulogne F, Adv Colloid Interface Sci 247 (2017) 100. https://doi.org/10.1016/j.cis.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  36. Burstein E, Phys Rev 93 (1954) 632. https://doi.org/10.1103/PhysRev.93.632

    Article  CAS  Google Scholar 

  37. Moss T S, Proc Phys Soc B 67 (1954) 775. https://doi.org/10.1088/0370-1301/67/10/306

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out in Active Components and Materials Laboratory, University of Oum El Bouaghi, Algeria. The authors are grateful to Director of the laboratory of materials and structure of electromechanical systems and their reliability (LMSSEF) of Oum El Bouaghi University, Algeria, for X-ray diffraction analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benkara Salima.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salima, B., Seddik, B., Nassima, S. et al. Investigation of the Doping and Withdrawal Speed Effect on the Properties of sol–gel Dip-coated Cu-Doped ZnO Thin Films. Trans Indian Inst Met 77, 1195–1203 (2024). https://doi.org/10.1007/s12666-023-03242-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03242-3

Keywords

Navigation