Skip to main content

Advertisement

Log in

Gallium-Based Metallic Pastes: Preparation from Powder Mixture by In Situ Synthesis of Liquid Component

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The paper presents a method for the synthesis of metal pastes and diffusion-hardening alloys based on gallium by intensive vibrational mixing of powder components: solid gallium and a complex of filler powders. Using this method (with a specially selected fractional composition of powdered components), a series of samples of Cu–Ga–Sn alloys were obtained—one of the “classic” systems used (with various additives) as metal solder adhesives and dental filling materials. Structural, thermochemical (DSC), physical and mechanical properties, phase composition of initial and hardened samples are presented. When mixing, dosing and storing the components of the initial powder mixture, there is no noticeable segregation, contact-reactive melting of the components. The production of gallium pastes in this work includes the synthesis of the liquid metal component in situ, in the process of vibration treatment of the powder mixture. In addition to ease of use, this method, apparently, can provide new opportunities for the design of the structure of gallium pastes, putties, hard metal solder adhesives and filling materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data are contained within the article.

References

  1. Tang S-Y, Tabor C, Kalantar-Zadeh K, and Dickey M D, Annu Rev Mater Res 51 (2021) 381. https://doi.org/10.1146/annurev-matsci-080819-125403

    Article  CAS  Google Scholar 

  2. Ding Y, Zeng M, and Fu L, Matter 3 (2020) 1477. https://doi.org/10.1016/j.matt.2020.08.012

    Article  Google Scholar 

  3. Pathumudy R D, and Prabhu K N, J Mater Sci Mater Electron 32 (2021) 11339. https://doi.org/10.1007/s10854-021-05635-w

    Article  CAS  Google Scholar 

  4. Ozutemiz K B, Wissman J, Ozdoganlar O B, and Majidi C, Adv Mater Interfaces 5 (10), (2018) 1701596(1–13). https://doi.org/10.1002/admi.201701596

    Article  CAS  Google Scholar 

  5. Khondoker M A H, and Sameoto D, Smart Mater Struct 25 (2016) 093001(1–23). https://doi.org/10.1088/0964-1726/25/9/093001

    Article  CAS  Google Scholar 

  6. Guymon G G, and Malakooti M H, J Polym Sci 60 (2022) 1300. https://doi.org/10.1002/pol.20210867

    Article  CAS  Google Scholar 

  7. Sun W, Qi M, Cheng S, Li C, Dong B, and Wang L, Mater Des 227 (2023) 111704(1–21). https://doi.org/10.1016/j.matdes.2023.111704

    Article  CAS  Google Scholar 

  8. Xie W, Allioux F-M, Ou J Z, Miyako E, Tang S-Y, and Kalantar-Zadeh K, Trends Biotechnol 39 (6), (2021) 624. https://doi.org/10.1016/j.tibtech.2020.10.005

    Article  CAS  PubMed  Google Scholar 

  9. Liu S, and Sweatman K, Materials 11 (2018) 1384. https://doi.org/10.3390/ma11081384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grigoreva T F, Kovaleva S A, Barinova A P, Šepelák V, Vityaz P A, and Lyakhov N Z, Phys Met Metallogr 111 (3), (2011) 258. https://doi.org/10.1134/S0031918X11020086

    Article  Google Scholar 

  11. Smith D L, Caul H L, and Sweeney W T, J Am Dental Assoc 53 (1956) 677. https://doi.org/10.14219/jada.archive.1956.0250

    Article  CAS  Google Scholar 

  12. Harman G G, Rev Sci Instrum 31 (7), (1960) 717. https://doi.org/10.1063/1.1717029

    Article  CAS  Google Scholar 

  13. Tikhomirova O I, Pikunov M V, Ruzinov L P, and Marchukova I D, Mater Sci 5 (1972) 586. https://doi.org/10.1007/BF00721171

    Article  Google Scholar 

  14. Yatsenko S P, and Hayak V G, Composition Solders Based on Fusible Alloys. Handbook, Urals Branch of RAS, Ekaterinburg (1997), p 187.

    Google Scholar 

  15. Yatsenko S P, Gallium: Interaction with Metals. Handbook, Nauka, Moscow (1974), p 220.

    Google Scholar 

  16. Hero H, Simensen C J, and Jorgensen R B, Biomaterials 17 (1996) 1321. https://doi.org/10.1016/S0142-9612(96)80009-3

    Article  CAS  PubMed  Google Scholar 

  17. Kaga M, Nakajima H, Sakai T, and Oguchi H, J Am Dental Assoc 127 (1996) 1195. https://doi.org/10.14219/jada.archive.1996.0411

    Article  CAS  Google Scholar 

  18. Rybakov A I, Ivanov V S, and Karalnik D M, Dental-Filling Materials, Medicine, Moscow (1981), p 176.

    Google Scholar 

  19. Shaini F J, Fleming G J P, Shortall A C C, and Marquis P M, Dental Mater 17 (2001) 142. https://doi.org/10.1016/S0109-5641(00)00054-3

    Article  CAS  Google Scholar 

  20. Waterstrat R M, and Longton R W, Public Health Rep 79 (7), (1964) 638. https://doi.org/10.2307/4592209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pinasco M R, Angelini E, Cordano E, and Rosalbino F, J Alloys Compd 317–318 (2001) 411. https://doi.org/10.1016/S0925-8388(00)01418-3

    Article  Google Scholar 

  22. Khudhair O A, Anaee R A, and Shabeeb K M, J Bio Tribo-Corros 6 (2020) 18(1–6). https://doi.org/10.1007/s40735-019-0313-x

    Article  Google Scholar 

  23. Wang C, Gong Y, Cunning B V, Lee S, Le Q, Joshi S R, Buyukcakir O, Zhang H, Seong W K, Huang M, Wang M, Lee J, Kim G-H, and Ruoff R S, Sci Adv 7 (2021) eabe3767 (1-10). https://doi.org/10.1126/sciadv.abe3767

    Article  CAS  Google Scholar 

  24. Shubin A B, Shunyaev K Y, and Yamshchikov L F, Defect Diffus Forum 283–286 (2009) 238. https://doi.org/10.4028/www.scientific.net/DDF.283-286.238

    Article  Google Scholar 

  25. Shubin A B, Shunyaev K Y, Bykov V A, and Noritsin S I, Defect Diffus Forum 312–315 (2011) 301. https://doi.org/10.4028/www.scientific.net/DDF.312-315.301

    Article  CAS  Google Scholar 

  26. Shemyakina O A, Sheikhalieva Z I, and Sheikhaliev S M, Russ J NonFerrous Met 51 (3), (2010) 250. https://doi.org/10.3103/S1067821210030107

    Article  Google Scholar 

  27. Shubin A B, Yamshchikov L F, Raspopin S P, Method for manufacturing metal pastes containing gallium. Author's certificate of the USSR (Patent) No. 1696549. Published 12/07/1991. Bulletin No. 45

  28. Shaker R E, Brantley W A, Wu Q, and Culbertson B M, Thermochim Acta 367–368 (2001) 393. https://doi.org/10.1016/S0040-6031(00)00660-2

    Article  Google Scholar 

  29. Liu S, McDonald S, Gu Q, Matsumura S, Qu D, Sweatman K, Nishimura T, and Nogita K, J Electron Mater 49 (1), (2020) 128. https://doi.org/10.1007/s11664-019-07688-4

    Article  CAS  Google Scholar 

  30. Lin Y, Genzer J, and Dickey M D, Adv Sci 7 (2020) 2000192(1–18). https://doi.org/10.1002/advs.202000192

    Article  CAS  Google Scholar 

  31. Akyildiz K, Kim J-H, So J-H, and Koo H-J, J Ind Eng Chem 116 (2022) 120. https://doi.org/10.1016/j.jiec.2022.09.046

    Article  CAS  Google Scholar 

  32. Kwon K Y, Truong V K, Krisnadi F, Im S, Ma J, Mehrabian N, Kim T, and Dickey M D, Adv Intell Syst 3 (2021) 2000159(1–11). https://doi.org/10.1002/aisy.202000159

    Article  Google Scholar 

  33. Regan M J, Tostmann H, and Pershan P S, Phys Rev B 55 (16), (1997) 10786. https://doi.org/10.1103/PhysRevB.55.10786

    Article  CAS  Google Scholar 

  34. Jacob A R, Parekh D P, Dickey M D, and Hsiao L C, Langmuir 35–36 (2019) 11774. https://doi.org/10.1021/acs.langmuir.9b01821

    Article  CAS  Google Scholar 

  35. Saedi M, Mohseni S M, and Groot I M N, Mater Chem Phys 275 (2022) 125203.

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out according to the state assignment for IMET UB RAS, using equipment of the Collaborative usage center «Ural-M».

Author information

Authors and Affiliations

Authors

Contributions

AS contributed to conceptualization, methodology, writing—original draft preparation and resources; AS and IG contributed to writing—review and editing, synthesis and investigations and theoretical analysis; and IG contributed to project administration. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ivan Gilev.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shubin, A., Gilev, I. Gallium-Based Metallic Pastes: Preparation from Powder Mixture by In Situ Synthesis of Liquid Component. Trans Indian Inst Met 77, 1063–1070 (2024). https://doi.org/10.1007/s12666-023-03235-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03235-2

Keywords

Navigation