Skip to main content
Log in

Enhancement of Molten Salt Corrosion Resistance of Ni-Based Superalloy Through Adding Inhibitor

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Recently, molten salt corrosion of metallic alloys in concentrated solar power (CSP) industries is one of the important and unavoidable issues among others. In this investigation, the role of inhibitor (i.e., Mg powder) on the hot corrosion behavior of Inconel 617 superalloy in molten chloride salts mixture has been examined through immersion corrosion test method and electron microscopic analysis. Post corrosion observations revealed that Cr at the grain boundary is preferentially depleted, which leads to severe grain boundary corrosion. By addition of 1 wt% Mg powder (as inhibitor), the corrosion rate (derived through percolation depth) was observed to be remarkably minimized by ~ 40% compared with the immersion test without Mg powder addition. The notable increase in corrosion resistance by the addition of Mg powder could be attributed to the reduction of oxidizing impurities in the molten salts mixture, which is considered to be the main culprit for the corrosion promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zervos A, Ed. Renewable 2019: Global Status Report, 2019. Paris: REN21 Secretariat, 2016, 107-109. ISBN 978-3-9818911-7-1

  2. Klein S J W, and Whalley S, Energy Policy 79 (2015) 127. https://doi.org/10.1016/j.enpol.2015.01.007

    Article  Google Scholar 

  3. Bijarniya J P, Sudhakar K, and Baredar P, Renew. Sust. Energ. Rev. 63 (2016) 593. https://doi.org/10.1016/j.rser.2016.05.064

    Article  Google Scholar 

  4. Liu M, Tay N H S, Bell S, Belusko M, Jacob R, Will G, Saman W, and Bruno F, Renew. Sust. Energ. Rev. 53 (2016) 1411. https://doi.org/10.1016/j.rser.2015.09.026

    Article  CAS  Google Scholar 

  5. Vignarooban K, Xu X, Arvay A, Hsu K, and Kannan A M, Appl. Energy 146 (2015) 383. https://doi.org/10.1016/j.apenergy.2015.01.125

    Article  CAS  Google Scholar 

  6. Ding W, Bonk A, and Bauer T, Front. Chem. Sci. Eng. 12 (2018) 564.

    Article  CAS  Google Scholar 

  7. Myers P D Jr, and Goswami D Y, Appl. Therm. Eng. 109 (2016) 889. https://doi.org/10.1016/j.applthermaleng.2016.07.046

    Article  Google Scholar 

  8. Mehos M, Turchi C, Gomez-Vidal JC, Wagner M, Ma Z, Ho C, Kolb W, Andraka C & Kruizenga A, Concentrating Solar Power Gen3 Demonstration Roadmap. National Renewable Energy Laboratory Technical Report (2017) 1–127. Technical Report NREL/TP-5500–67464. www.nrel.gov

  9. Gomez-Vidal J C, and Tirawat R, Sol. Energy Mater. Sol. Cells 157 (2016) 234. https://doi.org/10.1016/j.solmat.2016.05.052

    Article  CAS  Google Scholar 

  10. Sarvghad M, Maher S D, Collard D, Tassan M, Will G, and Steinberg T A, Energy Storage Mater. 14 (2018) 179. https://doi.org/10.1016/j.ensm.2018.02.023

    Article  Google Scholar 

  11. Sáncheza V E, Batuecas E, García A M, Mayo C, Díazc R, and Pérez F J, Sol. Energy 176 (2018) 688. https://doi.org/10.1016/j.solener.2018.10.083

    Article  CAS  Google Scholar 

  12. Gonzalez M, Nithiyanantham U, Argibay E C, Bondarchuk O, Grosu Y, and Faik A, Sol. Energy Mater. Sol. Cells 203 (2019) 110172. https://doi.org/10.1016/j.solmat.2019.110172

    Article  CAS  Google Scholar 

  13. Ding W, Shi H, Xiu Y, Bonk A, Weisenburger A, Jianu A, and Bauer T, Sol. Energy Mater. Sol. Cells 184 (2018) 22. https://doi.org/10.1016/j.solmat.2018.04.025

    Article  CAS  Google Scholar 

  14. Indacochea J E, Smith J L, Litko K R, and Karell E J, J. Mater. Res. 14 (1999) 1990. https://doi.org/10.1557/JMR.1999.0268

    Article  CAS  Google Scholar 

  15. Ding W, Shi H, Jianu A, Xiu Y, Bonk A, Weisenburger A, and Bauer T, Sol. Energy Mater. Sol. Cells 193 (2019) 298. https://doi.org/10.1016/j.solmat.2018.12.020

    Article  CAS  Google Scholar 

  16. Ding W, and Bauer T, Engineering 7 (2021) 334. https://doi.org/10.1016/j.eng.2020.06.027

    Article  CAS  Google Scholar 

  17. D’Souza B, Zhuo W, Yang Q, Leong A, and Zhang J, Corros. Sci. 187 (2021) 109483. https://doi.org/10.1016/j.corsci.2021.109483

    Article  CAS  Google Scholar 

  18. Sun H, Wang J Q, Tang Z, Liu Y, and Wang C, Corros. Sci. 164 (2020) 108350. https://doi.org/10.1016/j.corsci.2019.108350

    Article  CAS  Google Scholar 

  19. Diaz BLG, Olson L, Rodriguez MM, Fuentes R, Mercado HC & Gray J, High Temperature Electrochemical Engineering and Clean Energy Systems, J.S.C. acad. sci., 14 (2016) 11–14. https://scholarcommons.sc.edu/jscas/vol14/iss1/4

  20. Sridharan K & Allen TR, Molten salts chemistry-from lab to applications, Chapter-12 (2013) 241–267. https://doi.org/10.1016/B978-0-12-398538-5.00012-3

  21. Guo L, Liu Q, Yin H, Pan T J, and Tang Z, Corros. Sci. 166 (2020) 108473. https://doi.org/10.1016/j.corsci.2020.108473

    Article  CAS  Google Scholar 

  22. Gill S K, Sure J, Wang Y, Layne B, He L, Mahurin S, Wishart J F, and Sasaki K, Corros. Sci. 179 (2021) 109105. https://doi.org/10.1016/j.corsci.2020.109105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Director, CSIR-NML for providing the financial and equipment support to carry out the work under the i-PSG initiative as Project No: OLP-0399.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Pradhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, S.K., Jena, P.S.M., Chaithanya, P.V.S. et al. Enhancement of Molten Salt Corrosion Resistance of Ni-Based Superalloy Through Adding Inhibitor. Trans Indian Inst Met 77, 1323–1328 (2024). https://doi.org/10.1007/s12666-023-03234-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03234-3

Keywords

Navigation