Skip to main content
Log in

Atomic Investigation of Corrosion Mechanism and Surface Degradation of Fe–Cr–Ni Alloy in Presence of Water: Advance Reactive Molecular Dynamics Simulation

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Steel is the most versatile engineering and construction material. Construction, power, automobiles, infrastructure, manufacturing and various different industrial sectors are using steel as their most important raw material. It is also the most recycled metal material on earth. But steel is having a major problem of rusting when exposed to water. Interaction of steel products with water is almost unavoidable in majority of the cases like automobiles, construction, water pipes, etc. Thus a detailed atomistic study of steel with water is required to understand the corrosion behaviour. At the atomic scale, Fe, Cr, and Ni are the major alloying elements of steel and highly reactive with water which results in corrosion and degradation of both surface and bulk properties. Therefore, we have used reactive molecular dynamics simulation (RMDS) to investigate reactivity of water with Fe–Cr–Ni substrate. We have carried out large number of simulations at different initial conditions and found that water molecules split into H and OH. Further, OH predominantly reacts with Cr and forms chromium oxide compounds over the Fe–Cr–Ni substrate. In the next step, variation in potential energy and mean square displacement have been used for quantitative characterization of reaction between water and Fe–Cr–Ni substrate. This study can provide detailed perspective towards the corrosion behaviour of steel in humid environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sherif E S M, Almajid A A, Khalil K A, Junaedi H, and Latief F H, Int. J. Electrochem. Sci. 8 (2013) 9360.

    Article  CAS  Google Scholar 

  2. Gardner L, and Ashraf M, Eng. Struct. 28 (2006) 926.

    Article  Google Scholar 

  3. Xiao Z, Huang Y, Liu Z, Hu W, Wang Q, and Hu C, Metals 12 (2022) 876.

    Article  CAS  Google Scholar 

  4. Tisza M, and Czinege I, Int. J. Lightweight. Mater. Manuf. 1 (2018) 229.

    Google Scholar 

  5. Hansson C M, Metall. Mater. Trans. A 42 (2011) 2952.

    Article  CAS  Google Scholar 

  6. Wong H S, Zhao Y X, Karimi A R, Buenfeld N R, and Jin W L, Corros. Sci. 52 (2010) 2469.

    Article  CAS  Google Scholar 

  7. Sola E, Ožbolt J, Balabanić G, and Mir Z M, Cem. Concr. Res. 120 (2019) 119.

    Article  CAS  Google Scholar 

  8. Kim Y S, and Kim J G, Metals 7 (2017) 182.

    Article  Google Scholar 

  9. Zhao J, Liu Y, Yang X, He X, Wang L, Xiong D, and Gu Y, J. Wuhan Univ. Technol. Mater. Sci. Ed. 37 (2022) 677.

    Article  CAS  Google Scholar 

  10. Van Duin A C, Bryantsev V S, Diallo M S, Goddard W A, Rahaman O, Doren D J, and Hermansson K, J. Phys. Chem. A 114 (2010) 9507.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Raymand D, van Duin A C, Spångberg D, Goddard W A III, and Hermansson K, Surf. Sci. 604 (2010) 741.

    Article  CAS  Google Scholar 

  12. Dor Mohammadi H, Pang Q, Árnadóttir L, and Isgor O B, Comput. Mater. Sci. 145 (2018) 126.

    Article  CAS  Google Scholar 

  13. Allen M P, and Tildesley D J, Computer Simulation of Liquids, Oxford University Press, Oxford (1989).

    Google Scholar 

  14. Rapaport D C, Blumberg R L, McKay S R, and Christian W, Comput. Phys. 10 (1996) 456.

    Article  Google Scholar 

  15. Van Duin A C, Dasgupta S, Lorant F, and Goddard W A, J. Phys. Chem. A 105 (2001) 9396.

    Article  Google Scholar 

  16. Hoover W G, Phys. Rev. A 31 (1985) 1695.

    Article  CAS  Google Scholar 

  17. Evans D J, and Holian B L, J. Chem. Phys. 83 (1985) 4069.

    Article  CAS  Google Scholar 

  18. Verlet L, Phys. Rev. 159 (1967) 98.

    Article  CAS  Google Scholar 

  19. Plimpton S, J. Comput. Phys. 117 (1995) 1.

    Article  CAS  Google Scholar 

  20. Stukowski A, Model. Simul. Mater. Sci. Eng. 18 (1), (2009) 015012.

    Article  Google Scholar 

  21. Kumar S, Nandi S, Pattanayek S K, Madan M, Kaushik B, Kumar R, and Krishna K G, Mater. Chem. Phys. 308 (2023) 128242.

    Article  CAS  Google Scholar 

  22. Dong B, Liu W, Chen L, Zhang T, Fan Y, Zhao Y, and Sun Y, Corros. Sci. 209 (2022) 110741.

    Article  CAS  Google Scholar 

  23. Kumar S, and Sahu R K, Phys. Chem. Chem. Phys. 25 (2023) 13487.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roshan Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Kumar, S., Sahu, R.K. et al. Atomic Investigation of Corrosion Mechanism and Surface Degradation of Fe–Cr–Ni Alloy in Presence of Water: Advance Reactive Molecular Dynamics Simulation. Trans Indian Inst Met 77, 1355–1359 (2024). https://doi.org/10.1007/s12666-023-03181-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03181-z

Keywords

Navigation