Skip to main content
Log in

Effect of Weld Geometry on Irradiation-Induced Segregation Resistance of 316L Stainless Steel Weld at 400 °C

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

To explore the effect of weld geometry on irradiation-induced segregation and irradiation hardening, three different groove types of 316L austenitic stainless steel welds were studied in H+ with 5-MeV to a dose of 6.2 × 1017 ions/cm2 at 400 °C by means of Grazing incident X-ray diffraction, transmission electron microscope, energy-dispersive X-ray spectroscopy and nano-indentation technology. The results show that there was no new phase in three weld geometries after ion irradiation. A smaller heat input made the grain structure of the double U-groove weld smaller, and the surface void size was the smallest after irradiation. The higher grain density and grain boundary density made solute atoms more uniform and less segregated during diffusion, so that the weld had better mechanical properties. It is a feasible idea and method to refine the weld grain by double U-groove welding, so as to improve the irradiation-induced segregation resistance of the weld.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Johnson D C, Kuhr B, Farkas D, and Was G S, Scr Mater 116 (2016) 87.

    Article  CAS  Google Scholar 

  2. Alamo A, Bertin J L, Shamardin V K, and Wident P, J Nucl Mater 367–370 (2007) 54.

    Article  ADS  Google Scholar 

  3. Nishiyama Y, Onizawa K, Suzuki M, Anderegg J W, Nagai Y, Toyama T, Hasegawa M, and Kameda J, Acta Mater 56 (2008) 4510.

    Article  ADS  CAS  Google Scholar 

  4. Konobeev Y V, Dvoriashin A M, Porollo S I, and Garner F A, J Nucl Mater 355 (2006) 124.

    Article  ADS  CAS  Google Scholar 

  5. Messina L, Schuler T, Nastar M, Marinica M-C, and Olsson P, Acta Mater 191 (2020) 166.

    Article  ADS  CAS  Google Scholar 

  6. Jin H-H, Hwang S S, Choi M J, Lee G-G, and Kwon J, J Nucl Mater 513 (2019) 271.

    Article  ADS  CAS  Google Scholar 

  7. Chopra O K, and Rao A S, J Nucl Mater 409 (2011) 235.

    Article  ADS  CAS  Google Scholar 

  8. Fujii K, and Fukuya K, J Nucl Mater 469 (2016) 82.

    Article  ADS  CAS  Google Scholar 

  9. Lin X, Peng Q, Han E-H, Ke W, and Jiao Z, Mater Charact 151 (2019) 396.

    Article  CAS  Google Scholar 

  10. Lin X, Peng Q, Han E-H, Ke W, Sun C, and Jiao Z, Scr Mater 149 (2018) 11.

    Article  ADS  CAS  Google Scholar 

  11. Ziegler J, Biersack J, and Littmark U, The Stopping Range of Ions in Matter, Pergamon Press 1 (1985), p 93.

  12. Liu H, Wei Y, Tan C K I, Ardi D T, Tan D C C, and Lee C J J, Mater Charact 168 (2020) 110574.

    Article  CAS  Google Scholar 

  13. Bonny G, Konstantinovic M J, Bakaeva A, Yin C, Castin N, Mergia K, Chatzikos V, Dellis S, Khvan T, Bakaev A, Dubinko A, and Terentyev D, Acta Mater 198 (2020) 1.

    Article  ADS  CAS  Google Scholar 

  14. Liu Z Y, He B, Qu X, Niu L B, Li R S, and Wang F, Chin Phys B 28 (2019) 114.

    Google Scholar 

  15. Tschopp M A, Horstemeyer M F, Gao F, Sun X, and Khaleel M, Scr Mater 64 (2011) 908.

    Article  CAS  Google Scholar 

  16. Okamoto P R, and Wiedersich H, J Nucl Mater 53 (1974) 336.

    Article  ADS  CAS  Google Scholar 

  17. Allen T R, Busby J T, Was G S, and Kenik E A, J Nucl Mater 255 (1998) 44.

    Article  ADS  CAS  Google Scholar 

  18. Okamoto P R, and Rehn L E, J Nucl Mater 83 (1979) 2.

    Article  ADS  CAS  Google Scholar 

  19. Fukuya K, and Fujii K, J Nucl Sci Technol 46 (2009) 744.

    Article  CAS  Google Scholar 

  20. Toyama T, Nozawa Y, Van Renterghem W, Matsukawa Y, Hatakeyama M, Nagai Y, Al Mazouzi A, and Van Dyck S, J Nucl Mater 418 (2011) 62.

    Article  ADS  CAS  Google Scholar 

  21. Russell K C, Prog Mater Sci 28 (1984) 229.

    Article  CAS  Google Scholar 

  22. Mattucci M A, Cherubin I, Changizian P, Skippon T, and Daymond M R, Acta Mater 207 (2021) 116702

    Article  CAS  Google Scholar 

  23. Badji R, Chauveau T, and Bacroix B, Mater Sci Eng A 575 (2013) 94.

    Article  CAS  Google Scholar 

  24. Zhang X, Mei X, Cao X, Wang Y, Sun J, and Zheng P, J Nucl Mater 509 (2018) 496.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 51875264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucheng Lei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Lei, Y., Yao, Y. et al. Effect of Weld Geometry on Irradiation-Induced Segregation Resistance of 316L Stainless Steel Weld at 400 °C. Trans Indian Inst Met 77, 809–819 (2024). https://doi.org/10.1007/s12666-023-03178-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03178-8

Keywords

Navigation