Skip to main content
Log in

Effect of Aluminum Content on the Crevice Corrosion Behavior of Magnesium Alloys

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this work, the effect of aluminum content on the crevice corrosion behavior of the magnesium alloys has been investigated. The as-cast AZ31, AM60B and AZ80 alloys were subjected to the crevice corrosion in a freely aerated 3.5 wt.% NaCl solution, and the extent of the damage was quantified using weight loss measurement and 3D surface topography using an optical profilometer. The as-cast AM60B and AZ31 alloys exhibited the lowest and highest crevice corrosion resistances, respectively. The surface investigation using a scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS) and analysis of the corrosion products by Raman spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) suggested that the corrosion damage predominantly was primarily a function of the volume fraction and distribution of the Mg17Al12 precipitates. The lower corrosion resistance of the as-cast AM60B alloy (corrosion rate ~ 240 mpy) as compared to the as-cast AZ80 alloys (corrosion rate ~ 60 mpy) was attributed to the combined effect of the reduction in the barrier effect of the Mg17Al12 precipitates due to their discontinuous distribution and increase in the extent of the micro-galvanic effect due to the lower aluminum content in the α-Mg matrix in the AM60B alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data are available from the corresponding author upon reasonable request.

Code availability

Not Applicable.

References

  1. Pardo A, Merino M C, Coy A E, Arrabal R, Viejo F and Matykina E, Corros Sci, 50 (2008) 823.

  2. Makar G L, and Kruger J, Int Mater Rev 38 (1993) 138.

    Article  CAS  Google Scholar 

  3. Song G L, and Atrens A, Adv Eng Mater 1 (1999) 11.

    Article  CAS  Google Scholar 

  4. Staiger M P, Pietak A M, Huadmai J, and Dias G, Biomaterials 27 (2006) 1728.

    Article  CAS  PubMed  Google Scholar 

  5. Su Y, Lu Y, Su Y, Hu J, Lian J, and Li G, RSC Adv 5 (2015) 56001.

    Article  CAS  Google Scholar 

  6. Craig B D and Anderson DS, ASM International, Materials Park (1995) 8

  7. Weber C R, Knörnschild G, and Dick L F P, J Braz Chem Soc 14 (2003) 584.

    Article  CAS  Google Scholar 

  8. Eliezer D, Uzan P, and Aghion E, Mater Sci Forum 419 (2003) 857.

    Article  Google Scholar 

  9. Ghali E, Dietzel W, and Kainer K, J Mater Eng Perform 13 (2004) 7.

    Article  CAS  Google Scholar 

  10. Gusieva K, Davies C H J, Scully J R, and Birbilis N, Int Mater Rev 60 (2015) 169.

    Article  CAS  Google Scholar 

  11. Lunder O, Lein J E, Aune T K, and Nisancioglu K, Corros 45 (1989) 741.

    Article  CAS  Google Scholar 

  12. Zeng R C, Zhang J, Huang W J, Dietzel W, Kainer K U, Blawert C, and Wei K E, Trans Nonferrous Met Soc China 16 (2006) 763.

    Article  Google Scholar 

  13. ASTM Standard G193–20a, NACE International/ASTM International, (2022).

  14. Kirby C, Corros Sci 27 (1987) 567.

    Article  CAS  Google Scholar 

  15. Shi Z, and Atrens A, Mater Sci Forum 690 (2011) 365.

    Article  CAS  Google Scholar 

  16. ASTM Standard G78–15, ASTM International, (2015).

  17. ASTM Standard G1–03, ASTM International, (2017).

  18. Song G L, and Xu Z Q, Electrochim Acta 55 (2010) 4148.

    Article  CAS  Google Scholar 

  19. Williams G, Dafydd H L, and Grace R, Electrochim Acta 109 (2013) 489.

    Article  CAS  Google Scholar 

  20. Reddy U, Dubey D, Panda S S, Ireddy N, Jain J, Mondal K, and Singh S S, J Mater Eng Perform 71 (2021) 2209.

    Google Scholar 

  21. Marya M, Hector L G, Verma R, and Tong W, Mater Sci Eng A 418 (2006) 341.

    Article  Google Scholar 

  22. Pawar S, Zhou X, Thompson G E, Scamans G, and Fan Z, J. Electrochem Soc 162 (2015) 442.

    Article  Google Scholar 

  23. Prasad Y V R K, and Rao K P, Mater Des 30 (2009) 3723.

    Article  CAS  Google Scholar 

  24. Sarvesha R, Alam W, Ghokale A, Guruprasad T S, Bhagavath S, Karagadde S, Jain J and Singh S S, Mater. Sci. Eng. A, 759 (2019) 368.

  25. Kadali K, Dubey D, Sarvesha R, Kancharla H, Jain J, Mondal K, and Singh S S, J Met 71 (2019) 2209.

    CAS  Google Scholar 

  26. Sun W B, and Liu C M, Mater Sci Forum 849 (2016) 154.

    Article  Google Scholar 

  27. Hamu G B, Eliezer D, and Wagner L, J Alloys Compd 468 (2009) 222.

    Article  Google Scholar 

  28. Frost R L, J Raman Spectrosc 42 (2011) 1690.

    Article  CAS  Google Scholar 

  29. Jönsson M, Persson D, and Thierry D, Corros Sci 49 (2007) 1540.

    Article  Google Scholar 

  30. Wang L, Shinohara T, and Zhang B P, Appl Surf Sci 256 (2010) 5807.

    Article  CAS  Google Scholar 

  31. Xin Y, Huo K, Tao H, Tang G, and Chu P K, Acta Biomater 4 (2008) 2008.

    Article  CAS  PubMed  Google Scholar 

  32. Esmaily M, Svensson J E, Fajardo S, Birbilis N, Frankel G S, Virtanen S, Arrabal R, Thomas S, and Johansson L G, Prog Mater Sci 89 (2017) 92.

    Article  CAS  Google Scholar 

  33. Samaniego A, Llorente I, and Feliu S, Corros Sci 68 (2013) 66.

    Article  CAS  Google Scholar 

  34. Hu Q, Zhang G, Qiu Y, and Guo X, Corros Sci 53 (2011) 4065.

    Article  CAS  Google Scholar 

  35. Baumgärtner M, and Kaesche H, Mater Corros 39 (1988) 129.

    Article  Google Scholar 

  36. Lorking K F, and Mayne J E O, J Appl Chem 11 (2007) 170.

    Article  Google Scholar 

  37. Laycock N J, Stewart J, and Newman R C, Corros Sci 39 (1997) 1791.

    Article  CAS  Google Scholar 

  38. Dubey D, Kadali K, Panda S S, Kumar A, Jain J, Mondal K, and Singh S S, Mater Sci Eng A 792 (2020) 139.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Warren Poole at the University of British Colombia for providing as-cast AZ31 and AZ80 alloys. Authors acknowledge the financial support received from Indian Institute of Technology Kanpur. Authors also acknowledge the facilities at the Advanced Centre for Materials Science (ACMS), IIT Kanpur.

Funding

Financial support was provided by Indian Institute of Technology Kanpur.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Mondal or Sudhanshu S. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neetu, Ireddy, N., Panda, S.S. et al. Effect of Aluminum Content on the Crevice Corrosion Behavior of Magnesium Alloys. Trans Indian Inst Met 77, 1265–1274 (2024). https://doi.org/10.1007/s12666-023-03175-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03175-x

Keywords

Navigation