Skip to main content
Log in

Enhancement of Corrosion Resistance of Al2O3 + Sm2SrAl2O7 Composite Thermal Barrier Coatings by Laser Treatment

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The rare earth aluminate Sm2SrAl2O7 was synthesized in the laboratory through a molten salt synthesis technique at 1100 °C. A composite thermal barrier coating system on Inconel 718 substrate was developed with Al2O3–Sm2SrAl2O7 composite as the top coat and NiCrAlY as the bond coat using atmospheric plasma spraying. The surface of the plasma-sprayed coatings was treated using an Nd: YAG fiber laser to seal off the open porosities and reduce surface roughness. Hot corrosion tests on the laser-modified samples were performed at 700 °C and 900 °C, in aviation and marine corrosive conditions using 50 wt.% Na2SO4 + 50 wt.% V2O5 and 90 wt.% Na2SO4 + 5 wt.% V2O5 + 5 wt.% NaCl, respectively. The laser-treated samples showed higher resistance to failure than the as-coated samples under similar conditions. The corrosion products are identified, and the mechanisms involved are discussed in detail. The effect of surface modifications on the hot corrosion resistance of the coatings is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bajpai P, Das A, Bhattacharya P, Madayi S, Kulkarni K, and Omar S, J. Am. Ceram. Soc. 98 (2015) 2655. https://doi.org/10.1111/jace.13631

    Article  CAS  Google Scholar 

  2. Baskaran T, and Arya S B, Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.06.234

    Article  Google Scholar 

  3. Avci A, Eker A A, and Karabas M, Int. J. Mater. Res. 111 (2020) 1.

    Article  Google Scholar 

  4. Karabaş M, Bal E, and Taptik Y, Protection of Metals and Physical Chemistry of Surfaces 53 (2017) 859. https://doi.org/10.1134/S2070205117050069

    Article  Google Scholar 

  5. Keyvani A, Saremi M, Heydarzadeh Sohi M, Valefi Z, Yeganeh M, and Kobayashi A, J. Alloys Compd. 600 (2014) 158. https://doi.org/10.1016/j.jallcom.2014.02.004

    Article  CAS  Google Scholar 

  6. James Joseph F, Arya S B, and Satish Kumar D, Mater. Corros. (2023). https://doi.org/10.1002/maco.202313813

    Article  Google Scholar 

  7. Joseph F J, Arya S B, and Tailor S, Mater. Corros. 5 (2022) 1. https://doi.org/10.1002/maco.202213401

    Article  CAS  Google Scholar 

  8. Guo L, Li G, and Gan Z, J. Adv. Ceram. 10 (2021) 472. https://doi.org/10.1007/s40145-020-0449-7

    Article  CAS  Google Scholar 

  9. Guo L, Xin H, Zhang Z, Zhang X, and Ye F, J. Adv. Ceram. 9 (2020) 232. https://doi.org/10.1007/s40145-020-0363-z

    Article  CAS  Google Scholar 

  10. Wang D, Tian Z, Shen L, Liu Z, and Huang Y, Ceram. Int. 40 (2014) 8791. https://doi.org/10.1016/j.ceramint.2014.01.101

    Article  CAS  Google Scholar 

  11. Arshad A, Yajid M A M, and Idris M H, Mater. Today Proc. 39 (2021) 941. https://doi.org/10.1016/j.matpr.2020.04.145

    Article  CAS  Google Scholar 

  12. Zhang Z, Tan X H, Zhang J, and Shan J G, Int. J. Adhes. Adhes. 85 (2018) 184. https://doi.org/10.1016/j.ijadhadh.2018.06.013

    Article  CAS  Google Scholar 

  13. Múnez C J, Gómez-García J, Sevillano F, Poza P, and Utrilla M V, J. Nanosci. Nanotechnol. 11 (2011) 8724. https://doi.org/10.1166/jnn.2011.3457

    Article  CAS  PubMed  Google Scholar 

  14. Moriya R, Iguchi M, Sasaki S, and Yan J, Procedia CIRP 42 (2016) 464. https://doi.org/10.1016/j.procir.2016.02.233

    Article  Google Scholar 

  15. Ghasemi R, Shoja-Razavi R, Mozafarinia R, and Jamali H, Ceram. Int. 40 (2014) 347. https://doi.org/10.1016/j.ceramint.2013.06.008

    Article  CAS  Google Scholar 

  16. Tsai P C, Lee J H, and Chang C L, Surf. Coatings Technol. 202 (2007) 719. https://doi.org/10.1016/j.surfcoat.2007.07.005

    Article  CAS  Google Scholar 

  17. Govindarajan G, Joy Johanson F, Uma Shankar V, and Joseph Salethraj M, Mater. Technol. (2021). https://doi.org/10.1080/10667857.2021.1985750

    Article  Google Scholar 

  18. Chen Y H, Huang E, and Yu S C, Solid State Commun. 149 (2009) 2050. https://doi.org/10.1016/j.ssc.2009.08.023

    Article  CAS  Google Scholar 

  19. Jana P, Jayan P S, Mandal S, and Biswas K, Surf. Coat. Technol. 322 (2017) 108. https://doi.org/10.1016/j.surfcoat.2017.05.038

    Article  CAS  Google Scholar 

  20. Afrasiabi A, Saremi M, and Kobayashi A, Mater. Sci. Eng. A 478 (2008) 264. https://doi.org/10.1016/j.msea.2007.06.001

    Article  CAS  Google Scholar 

  21. Baskaran T, Synthesis and development of Sm2SrAl2O7 based air plasma sprayed ceramic thermal barrier coatings: oxidation, hot corrosion and high temperature erosion study (2018).

  22. Busca G, Catal. Today 226 (2014) 2. https://doi.org/10.1016/j.cattod.2013.08.003

    Article  CAS  Google Scholar 

  23. Yugeswaran S, Kobayashi A, and Ananthapadmanabhan P V, J. Eur. Ceram. Soc. 32 (2012) 823. https://doi.org/10.1016/j.jeurceramsoc.2011.10.049

    Article  CAS  Google Scholar 

  24. Ramaswamy P, Seetharamu S, and Raob K J, Compos. Sci. Technol. 57 (1997) 81.

    Article  CAS  Google Scholar 

  25. Gurrappa I, Oxid. Met. 51 (1999) 353. https://doi.org/10.1023/a:1018831025272

    Article  CAS  Google Scholar 

  26. Andersson J M, Controlling the Formation and Stability of Alumina Phases, Linköping University, Linköping (2005).

    Google Scholar 

  27. Sadeghi E, Markocsan N, and Joshi S, Advances in Corrosion-Resistant Thermal Spray Coatings for Renewable Energy Power Plants. Part I: Effect of Composition and Microstructure, vol. 28. Springer, Berlin (2019).

    Google Scholar 

  28. Jarvis E, and Carter E, Comput Sci. Eng. 1 (2002) 33.

    Article  Google Scholar 

  29. Reza M S, Aqida S N, and Ismail I, IOP Conference Series: Materials Science and Engineering (2018). https://doi.org/10.1088/1757-899X/319/1/012067

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Metallizing Equipments, Jodhpur, and RRCAT, Indore, for the support offered in the development of samples. The authors are also thankful to CRF NITK for providing the characterization facilities. The help received from the operators Mr. Akash, Mrs. Aniz, Mr. Sanath, and Mr. Pradeep is greatly acknowledged.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Bhushan Arya.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

James Joseph, F., Arya, S.B. Enhancement of Corrosion Resistance of Al2O3 + Sm2SrAl2O7 Composite Thermal Barrier Coatings by Laser Treatment. Trans Indian Inst Met 77, 1381–1391 (2024). https://doi.org/10.1007/s12666-023-03159-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03159-x

Keywords

Navigation