Skip to main content
Log in

Correlation Between Microstructure and Corrosion Behavior of the Dissimilar Joints of Incoloy 800HT and P91 Steel Using GTAW Process

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Incoloy 800HT and P91 steel were welded with two different filler materials (ERNiCr-3 and ER505) by the GTAW process. The microstructure of the two different weldments was examined by using optical microscope (OM) and scanning electron microscope (SEM). The corrosion behaviors of the base metals and welded joints were assessed by electrochemical corrosion studies. Microstructural analysis revealed that ERNiCr-3 filler-based weld showed equiaxed grains with columnar dendritic structure, whereas the ER505 filler-based weld had a mixed cellular and dendritic structure. An unmixed zone was found between the interface and the weld on the Incoloy 800HT side, whereas Type I and Type II boundaries were found on the P91 steel side. Due to the formation of chromium-rich M23C6 precipitates, a chromium-depleted zone was created near the grain boundary that deteriorated the corrosion resistance of the ER505 weld. Meanwhile, the ERNiCr-3 weld exhibited higher corrosion resistance due to the significant inclusion of Ni and Cr components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ali M, Ul-Hamid A, Alhems L M, and Saeed A, Eng Fail Anal 109 (2020) 104396. https://doi.org/10.1016/j.engfailanal.2020.104396

    Article  Google Scholar 

  2. Ming H, Wang J, and Han E H, Mater Charact 139 (2018) 186–196. https://doi.org/10.1016/j.matchar.2018.02.044

    Article  CAS  Google Scholar 

  3. Tumer M, Karahan T, and Mert T, Weld World 64 (2020) 21. https://doi.org/10.1007/s40194-019-00825x

    Article  CAS  Google Scholar 

  4. Hejripour F, and Aidun D K J, Mater Proc Technol 245 (2017) 287. https://doi.org/10.1016/j.jmatprotec.2017.02.013

    Article  CAS  Google Scholar 

  5. Sayiram G, and Arivazhagan N, Mater Charact 102 (2015) 180.

    Article  CAS  Google Scholar 

  6. Xu H, Xu M J, Yu C, Lu H, Wei X, Chen J M, and Xu J J, J Mater Process Technol 240 (2017) 162–167.

    Article  CAS  Google Scholar 

  7. Rahman M A, Raheem N A, El Koussy M R, Acta Metallurgica Sinica (English Letters) 27 259

  8. Abe H, and Watanabe Y, J Nuclear Mater 424 (2012) 57.

    Article  CAS  ADS  Google Scholar 

  9. Zhang Z, Zhao H, Zhang H, Hu J, and Jin J, Corros Sci 121 (2017) 31.

    Article  CAS  ADS  Google Scholar 

  10. Abbasi H, and Derakhshandeh-Haghighi R, Int J Pressure Vessels Piping 199 (2022) 104760

    Article  CAS  Google Scholar 

  11. Lakshmanan V, and Sathiya P, Trans Indian Inst Met 72 (2019) 2673.

    Article  CAS  Google Scholar 

  12. Bhanu V, Pandey S M, Gupta A, and Pandey C, Int J Pressure Vessels Piping 199 (2022) 104782

    Article  CAS  Google Scholar 

  13. Sireesha M, Albert S K, Shankar V, and Sundaresan S, Mate Sci Eng A 292 (2000) 74.

    Article  Google Scholar 

  14. Dehmolaei R, Shamanian M, and Kermanpur A, Mater Charact 59 (2008) 1447.

    Article  CAS  Google Scholar 

  15. Panday C, Giri A, and Mahapatra M M, Mate Sci Eng A 664 (2016) 58.

    Article  Google Scholar 

  16. Mortezaie A, and Shamanian M, Int J Press Vessel 116 (2014) 37.

    Article  CAS  Google Scholar 

  17. Hosseini H S, Shamanian M, and Kermanpur A, Mater Charact 62 (2011) 425.

    Article  Google Scholar 

  18. Dehmolaei R, Shamanian M, and Kermanpur A, Sci Technol Weld Join 13 (2008) 515.

    Article  CAS  Google Scholar 

  19. Lee H T, and Jeng S L, Sci Technol Weld Join 6 (2001) 225. https://doi.org/10.1179/136217101101538811

    Article  CAS  Google Scholar 

  20. Jiang Y, Tan H, and Wang Z, Corros Sci 70 (2013) 252.

    Article  CAS  Google Scholar 

  21. Wang S, Ma Q, and Li Y, Mater Design 32 (2011) 831.

    Article  CAS  Google Scholar 

  22. Wang W, Lu Y, Ding X, and Shoji T, Mater Charact 107 (2015) 255.

    Article  CAS  Google Scholar 

  23. Kaneko K, Fukunaga T, Yamada K, Nakada N, Kikuchi M, Saghi Z, Barnard J S, and Midgley P A, Scripta Materialia 65 (2011) 509.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Lakshmanan.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshmanan, V., Sathiya, P., Arunnellaiappan, T. et al. Correlation Between Microstructure and Corrosion Behavior of the Dissimilar Joints of Incoloy 800HT and P91 Steel Using GTAW Process. Trans Indian Inst Met 77, 685–696 (2024). https://doi.org/10.1007/s12666-023-03156-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03156-0

Keywords

Navigation