Skip to main content
Log in

A Better Understanding of Solidification of Alloys Through Study of Glass/Crystal Composites

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Metallic glasses are non-crystalline solids which form when crystal nucleation and growth is precluded either fully or partly. In the event of a partial suppression of crystal formation, a solid result which has crystals embedded in an amorphous glassy matrix. The process of solidification can be studied in a unique way from the liquid side by examining this composite. The effect of subtle changes in the liquid structure on the formation of crystals is possible to study by this methodology, something which is impossible otherwise. This presentation first examines the effect of liquid structure on the nucleation of crystals by examining the short-range order in the glass. The stability of the liquid/crystal interface and growth of crystals by addition of atomic ledges have been examined. The structure of the liquid also get effected by the cooling rates. How these changes in the structure of the liquid due to cooling rate variation is manifested in the change of the medium-range order (MRO) as a function of cooling rate and the consequent effect on properties. Finally, the changes taking place in a liquid just before it transforms to crystal are ascertained by examining the MRO of supercooled liquid just next to the liquid/crystal interface and that away from the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Budhani R C, Goel T C, and Chopra K L, Bull. Mater. Sci. 4 (1982) 549. https://doi.org/10.1007/BF02824962

    Article  CAS  Google Scholar 

  2. Hui X, Fang H Z, Chen G L, Shang S L, Wang Y, Qin J Y, and Liu Z K, Acta Mater. 57 (2009) 376. https://doi.org/10.1016/J.ACTAMAT.2008.09.022

    Article  CAS  Google Scholar 

  3. Miracle D B, Nat. Mater. 310 (2004) 697. https://doi.org/10.1038/nmat1219

    Article  CAS  Google Scholar 

  4. Inoue A, Acta Mater. 48 (2000) 279. https://doi.org/10.1016/S1359-6454(99)00300-6

    Article  CAS  Google Scholar 

  5. Vishwanadh B, Abraham G J, Jagannath S, Neogy R S, and Dutta G K D, Mater. Trans. A Phys. Metall. Mater. Sci. 40 (2009) 1131. https://doi.org/10.1007/S11661-009-9810-8/METRICS

    Article  Google Scholar 

  6. Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R, and Chen M W, Science 341 (2013) 376. https://doi.org/10.1126/science.1232450

    Article  CAS  Google Scholar 

  7. Hirata A, Guan P, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T, and Chen M, Nat. Mater. 10 (2011) 28. https://doi.org/10.1038/nmat2897

    Article  CAS  Google Scholar 

  8. Chen M, NPG Asia Mater. 3 (2011) 82. https://doi.org/10.1038/asiamat.2011.30

    Article  Google Scholar 

  9. Hwang J, and Voyles P M, Microsc. Microanal. 17 (2011) 67. https://doi.org/10.1017/S1431927610094109

    Article  CAS  Google Scholar 

  10. Voyles P M, Gibson J M, and Treacy M M J, J. Electron Microsc. (Tokyo) 49 (2000) 259. https://doi.org/10.1093/oxfordjournals.jmicro.a023805

    Article  CAS  Google Scholar 

  11. P.M. Voyles, D. A Muller, Fluctuation microscopy in the STEM Ultramicroscopy. 93 (2002) 147–59. http://www.ncbi.nlm.nih.gov/pubmed/12425592.

  12. Sarkar N K, Vishwanadh B, Prajapat C L, Babu P D, Ravikumar G, Dey G K, Voyles P M, Tewari R, and Mishra P K, Mater. Today Commun. 25 (2020) 101427. https://doi.org/10.1016/j.mtcomm.2020.101427

    Article  CAS  Google Scholar 

  13. Flores K M, Sherer E, Bharathula A, Chen H, and Jean Y C, Acta Mater. 55 (2007) 3403. https://doi.org/10.1016/j.actamat.2007.01.040

    Article  CAS  Google Scholar 

  14. Flores K M, Suh D, Daukardt R H, Asoka Kumar P, Sterne P A, and Howell R H, J. Mater. Res. 17 (2002) 1153. https://doi.org/10.1063/1.2825427

    Article  CAS  Google Scholar 

  15. Li J, Wang Z L, and Hufnagel T C, Rev. B Condens. Matter Mater. Phys. 65 (2002) 1442011. https://doi.org/10.1103/PhysRevB.65.144201

    Article  CAS  Google Scholar 

  16. Miller P D, and Gibson J M, Ultramicroscopy. 74 (1998) 221. https://doi.org/10.1016/S0304-3991(98)00044-8

    Article  CAS  Google Scholar 

  17. Kelton K F, Lee G W, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson M B, and Robinson D S, Phys. Rev. Lett. 90 (2003) 4. https://doi.org/10.1103/PhysRevLett.90.195504

    Article  CAS  Google Scholar 

  18. Savalia R T, Lad K N, Pratap A, Dey G K, and Banerjee S, J. Therm. Anal. Calorim. 78 (2004) 745. https://doi.org/10.1007/s10973-004-0441-4

    Article  CAS  Google Scholar 

  19. Köster U, Meinhardt J, Roos S, and Busch R, Mater. Sci. Eng. A. 226–228 (1997) 995. https://doi.org/10.1016/S0921-5093(97)80100-1

    Article  Google Scholar 

  20. Saida J, Matsushita M, and Inoue A, J. Non. Cryst. Solids. 312–314 (2002) 617. https://doi.org/10.1016/S0022-3093(02)01768-4

    Article  Google Scholar 

  21. Vishwanadh B, Sharma S K, Pujari P K, Kishore R, Dey G K, and Tewari R, Philos. Mag. 93 (2013) 3442. https://doi.org/10.1080/14786435.2013.810818

    Article  CAS  Google Scholar 

  22. Pelletier J M, and Qiao J, Metallic glasses, Springer, London (2019), pp 617–643.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Vishwanadh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishwanadh, B., Ghosh, C., Dasgupta, A. et al. A Better Understanding of Solidification of Alloys Through Study of Glass/Crystal Composites. Trans Indian Inst Met (2023). https://doi.org/10.1007/s12666-023-03143-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-023-03143-5

Keywords

Navigation