Skip to main content
Log in

Microstructural and Eddy Current Evaluation of Ball-Milled Nanostructured Aluminum–Titanium Alloys

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Nanostructured aluminum–titanium (Al–Ti) alloys are gaining interest for their unique properties resulting from the size effect of their crystalline structure. In this study, we synthesized Al–Ti alloys using a ball planetary mill with powdered Al and Ti components. The formation of the Al (Ti) solid solution was observed after 24 h of milling, and a crystalline size of 4 nm was attained after 48 h of milling. To investigate the electromagnetic behavior of the Al–Ti alloys during the milling process, we utilized eddy current analysis, which enabled us to monitor the nanostructural state of the material by analyzing its impedance diagram. Our results demonstrate that the eddy current method is an effective approach to assess the electromagnetic properties of nanostructured Al–Ti alloys. Furthermore, we conducted morphological and structural investigations of the synthesized alloys using scanning electron microscopy and X-ray diffractometer, respectively. In addition, we measured the mechanical properties of the alloys using micro-hardness tests and found that the impedance and microhardness varied in a similar manner. Based on these observations, we propose that the variation of microhardness can be estimated from the changes in impedance measured by the eddy current technique, providing a novel way to assess the mechanical properties of nanostructured Al–Ti alloys. This study highlights the successful synthesis and characterization of nanostructured Al–Ti alloys using a ball planetary mill. Our findings indicate the effectiveness of eddy current analysis in assessing the electromagnetic properties of these alloys and suggest a new approach to evaluate their mechanical properties. These results provide useful insights for designing and developing novel nanostructured Al–Ti alloys with customized properties for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Koch Carl C, Nanostructured Materials: Processing, Properties and Applications, William Andrew, Norwich (2006).

    Google Scholar 

  2. Kumar A, Singh A, and Suhane A, J Mater Res Technol 17 (2022) 2431. https://doi.org/10.1016/j.jmrt.2022.01.141

    Article  CAS  Google Scholar 

  3. Cocco G, Soletta I, Battezzati L, Baricco M, and Enzo S, Philos Mag B 61 (1990) 473. https://doi.org/10.1080/13642819008219288

    Article  Google Scholar 

  4. Moon K I, and Lee K S, J Alloys Compd 291 (1999) 312. https://doi.org/10.1016/S0925-8388(99)00299-6

    Article  CAS  Google Scholar 

  5. Zhang F, Lu L, and Lai M O, J Alloys Compd 297 (2000) 211. https://doi.org/10.1016/S0925-8388(99)00568-X

    Article  CAS  Google Scholar 

  6. Suryanarayana C, Prog Mater Sci 46 (2001) 1. https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  CAS  Google Scholar 

  7. Nayak S S, Kim D H, Pabi S K, and Murty B S, Trans Indian Inst Met 65 (2012) 647. https://doi.org/10.1007/s12666-012-0213-y

    Article  CAS  Google Scholar 

  8. Forouzanmehr N, Karimzadeh F, and Enayati M H, J Alloys Compd 471 (2009) 93. https://doi.org/10.1016/j.jallcom.2008.03.121

    Article  CAS  Google Scholar 

  9. Chi Y, Gu G, Yu H, and Chen C, Opt Lasers Eng 100 (2018) 23. https://doi.org/10.1016/j.optlaseng.2017.07.006

    Article  Google Scholar 

  10. Milgrāvis M, Kroņkalns G, Nikoluškins R, Beinerts T, Kalvāns M, Bojarevičs A, and Perianu I A, Solid State Phenom 332 (2022) 19. https://doi.org/10.4028/p-9shcqm

    Article  Google Scholar 

  11. Li Y, Zhang Y, Bi J, and Luo Z, Mater Des 83 (2015) 577. https://doi.org/10.1016/j.matdes.2015.06.042

    Article  CAS  Google Scholar 

  12. Zhao W, Liu N, Rong J E L, and Zhao D, Adv Eng Mater 19 (2017) 1600866. https://doi.org/10.1002/adem.201600866

    Article  CAS  Google Scholar 

  13. Moon K I, Park H S, and Lee K S, J Alloys Compd 325 (2001) 236. https://doi.org/10.1016/S0925-8388(01)01352-4

    Article  CAS  Google Scholar 

  14. Kambara M, Uenishi K, and Kobayashi K F, J Mater Sci 35 (2000) 2897. https://doi.org/10.1023/A:1004771808047

    Article  CAS  Google Scholar 

  15. García-Martín J, Gómez-Gil J, and Vázquez-Sánchez E, Sensors 11 (2011) 2525. https://doi.org/10.3390/s110302525

    Article  Google Scholar 

  16. Younes A, Powder Metall Met Ceram 61 (2022) 81. https://doi.org/10.1007/s11106-022-00309-6

    Article  CAS  Google Scholar 

  17. Younes A, and Kherrouba N, Emerg Mater Res 11 (2022) 268. https://doi.org/10.1680/jemmr.21.00174

    Article  Google Scholar 

  18. Xie S, Yang S, Tian M, Zhao R, Chen Z, Zheng Y, and Takagi T, NDT E Int 138 (2023) 102900. https://doi.org/10.1016/j.ndteint.2023.102900

    Article  Google Scholar 

  19. Cuevas F G, Montes J M, Cintas J, and Gallardo J M, Powder Metall 48 (2013) 365. https://doi.org/10.1179/174329005X78121

    Article  CAS  Google Scholar 

  20. Yadav M K, Siddiquee A N, and Khan Z A, Met Mater Int 27 (2021) 2378. https://doi.org/10.1007/s12540-019-00603-w

    Article  CAS  Google Scholar 

  21. Belgibayeva A, Abzaev Y, Karakchieva N, Erkasov R, Sachkov V, and Kurzina I, Metals 10 (2020) 859. https://doi.org/10.3390/met10070859

    Article  CAS  Google Scholar 

  22. Al-Dabbagh J B, Tahar R M, Harun S A, and Ishak M, Int J Nanoelectron Mater 8 (2015) 23.

    Google Scholar 

  23. Cuevas F G, Cintas J, Montes J M, and Gallardo J M, J Mater Sci 41 (2006) 8339. https://doi.org/10.1007/s10853-006-1029-0

    Article  CAS  Google Scholar 

  24. Supriyanto A A, and Daud A R, in AIP Conference Proceedings 1202 (2009) 117. https://doi.org/10.1063/1.3295580.

  25. Supriyanto A A, Widodo W, Tauvana A I, and Syafrizal S, Int J Adv Technol Mech Mechatron Mater 1 (2020) 50. https://doi.org/10.37869/ijatec.v1i2.21

    Article  Google Scholar 

  26. Abada A, Bergheul S, and Younes A, Micro Nano Lett 15 (2020) 1023. https://doi.org/10.1049/mnl.2020.0336

    Article  CAS  Google Scholar 

  27. Knaislová A, Novák P, and Prùsa F, Manuf Technol 16 (2016) 1274. https://doi.org/10.21062/ujep/x.2016/a/1213-2489/MT/16/6/1274

    Article  Google Scholar 

  28. Marya M, Marya S, and Priem D, Weld World 49 (2005) 74. https://doi.org/10.1007/BF03263412

    Article  CAS  Google Scholar 

  29. Zergoug M, Lebaili S, Boudjellal H, and Benchaala A, NDT E Int 37 (2004) 65. https://doi.org/10.1016/j.ndteint.2003.09.002

    Article  CAS  Google Scholar 

  30. Laslouni W, and Azzaz M, Emerg Mater Res 8 (2019) 552. https://doi.org/10.1680/jemmr.18.00139

    Article  Google Scholar 

  31. Tochaee E B, Hosseini H M, and Reihani S S, J Alloys Compd 681 (2016) 12. https://doi.org/10.1016/j.jallcom.2016.04.111

    Article  CAS  Google Scholar 

  32. Ghis R, Hammouda A, Ziouche A, Boucherou N, Choucha A, Halimi R, and Benmoussat A, Russian J Nondestruct Test 59 (2023) 292. https://doi.org/10.1134/S1061830922600848

    Article  CAS  Google Scholar 

  33. Liu T, Wang W, Qiang W, and Shu G, J Nucl Mater 501 (2018) 1. https://doi.org/10.1016/j.jnucmat.2018.01.028

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahmane Younes.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

The manuscript has not been submitted to more than one publication for simultaneous consideration. The submitted work is original and has not been published elsewhere in any form or language.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abada, A., Younes, A. Microstructural and Eddy Current Evaluation of Ball-Milled Nanostructured Aluminum–Titanium Alloys. Trans Indian Inst Met 77, 513–521 (2024). https://doi.org/10.1007/s12666-023-03135-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03135-5

Keywords

Navigation