Skip to main content
Log in

Analysis of the Impact of Thermomechanical Treatments on Internal Friction in AA6060 Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This study aims to identify internal friction (IF) peaks and to understand IF sensitivity to thermomechanical treatments in an Al alloy. The used commercial Al–Mg–Si alloy (AA6060) is subjected to two different thermomechanical cycles. Obtained results demonstrate that thermomechanical treatments have a significant effect on IF behavior. IF curves reveals the appearance of two distinct peaks. The first P1 appears at a medium temperature (around 463 K) in all states. It is mainly due to dislocation motion controlled by dragging clouds composed of Mg or Mg–Si in the presence of metastable precipitates. The second PR appears at high temperature (643 K) in the deformed samples. It is attributed to a transition from high IF background to low IF background due to recrystallization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Poddaeva O, and Fedosova A, Review. Energy Rep. 7 (2021) 299. https://doi.org/10.1016/j.egyr.2021.07.119

    Article  Google Scholar 

  2. Fiocchi J, Biffi C A, Scaccabarozzi D, Saggin B, and Tuissi A, Adv. Eng. Mater. 22 (2020) 1900722. https://doi.org/10.1002/adem.201900722

    Article  CAS  Google Scholar 

  3. Andersen S J, Marioara C D, Vissers R, Frøseth A, and Zandbergen H W, Mater. Sci. Eng. A 444 (2007) 157. https://doi.org/10.1016/j.msea.2006.08.084

    Article  CAS  Google Scholar 

  4. Xie C Y, Schaller R, and Jaquerod C, Mater. Sci. Eng. A 252 (1998) 78. https://doi.org/10.1016/S0921-5093(98)00683-2

    Article  Google Scholar 

  5. Schaller R, and Rivière A, Mater. Sci. Forum 366–368 (2001) 276. https://doi.org/10.4028/www.scientific.net/MSF.366-368.276

    Article  Google Scholar 

  6. Schaller R, and Benoit W, J. Phys. Colloq. 44 (1983) 9. https://doi.org/10.1051/jphyscol:1983902

    Article  Google Scholar 

  7. Carreño-Morelli E, Urreta S E, and Ghilarduccdei Salva A A, Phys. Status Solidi A 158 (1996) 449. https://doi.org/10.1002/pssa.2211580213

    Article  Google Scholar 

  8. Xie C Y, Schaller R, and Jaquerod C, Scr. Mater. 39 (1998) 225. https://doi.org/10.1016/S1359-6462(98)00158-4

    Article  CAS  Google Scholar 

  9. Xie C Y, Carreño-Morelli E, and Schaller R, Philos. Mag. A 81 (2001) 2149. https://doi.org/10.1080/01418610108217140

    Article  CAS  Google Scholar 

  10. Williams K J, Acta Metall. 15 (1967) 393. https://doi.org/10.1016/0001-6160(67)90220-9

    Article  CAS  Google Scholar 

  11. Szenes G, and Zsambok D, Phys. Status Solidi A 21 (1974) K105. https://doi.org/10.1002/pssa.2210210257

    Article  CAS  Google Scholar 

  12. Zheng K, Liu S, and Tian D, Phys. Status Solidi A 116 (1989) 621. https://doi.org/10.1002/pssa.2211160220

    Article  CAS  Google Scholar 

  13. Urreta S E, Ghilarduccdei Salva A A, and Louchet F, Phys. Status Solidi A 139 (1993) 345. https://doi.org/10.1002/pssa.2211390208

    Article  CAS  Google Scholar 

  14. Schöck G, Acta Metall. 11 (1963) 617. https://doi.org/10.1016/0001-6160(63)90096-8

    Article  Google Scholar 

  15. Pichler A, Weller M, and Arzt E, Acta Metall. Mater. 42 (1994) 3801. https://doi.org/10.1016/09567151(94)90445-6

    Article  CAS  Google Scholar 

  16. Blanter M S, Golovin I S, Neuhäuser H, and Sinning H-R, Internal Friction in Metallic Materials, Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-68758-0

    Book  Google Scholar 

  17. Xie CY, Development of high damping aluminum alloys for light weight systems, Ph.D. Thesis, EPFL (Lausanne, Switzerland), 1999. https://doi.org/10.5075/epfl-thesis-1981

  18. Belson J, Lemercier D, Moser P, and Vigier P, Phys Status Solidi A. 40 (1970) 647. https://doi.org/10.1002/pssb.19700400224

    Article  CAS  Google Scholar 

  19. Laouar B, Hamana D, and Hayoune A, Mater. Sci. Technol. 39 (2023) 519. https://doi.org/10.1080/02670836.2022.2125202

    Article  CAS  Google Scholar 

  20. Granato A, and Lücke K, J. Appl. Phys. 27 (1956) 583. https://doi.org/10.1063/1.1722436

    Article  Google Scholar 

  21. Feng X, Sun Y, Wan S, Chen G, and He J, Materials 13 (2020) 5574. https://doi.org/10.3390/ma13235574

    Article  CAS  Google Scholar 

  22. Ding L, He Y, Wen Z, Zhao P, Jia Z, and Liu Q, J. Alloys Compd. 647 (2015) 238. https://doi.org/10.1016/j.jallcom.2015.05.188

    Article  CAS  Google Scholar 

  23. Golovin I S, Mikhaylovskaya A V, and Sinning H-R, J. Alloys Compd. 577 (2013) 622. https://doi.org/10.1016/j.jallcom.2013.06.138

    Article  CAS  Google Scholar 

  24. Golovin I S, Bychkov A S, Medvedeva S V, Hu X S, and Zheng M Y, Phys. Met. Metallogr. 114 (2013) 327. https://doi.org/10.1134/S0031918X13020087

    Article  Google Scholar 

  25. Mikhaylovskaya A V, Portnoy V K, Mochugovskiy A G, Zadorozhnyy M Y, Tabachkova N Y, and Golovin I S, Mater. Des. 109 (2016) 197. https://doi.org/10.1016/j.matdes.2016.07.010

    Article  CAS  Google Scholar 

  26. Angella G, Bassani P, and Tuissi A, Mater. Trans. 45 (2004) 2282. https://doi.org/10.2320/matertrans.45.2282

    Article  CAS  Google Scholar 

  27. Rao P N, and Jayaganthan R, Mater. Des. 39 (2012) 226. https://doi.org/10.1016/j.matdes.2012.02.010

    Article  CAS  Google Scholar 

  28. Bin L I, Luo B H, He K J, and Fan W L, Trans. Nonferrous Met. Soc. China 26 (2016) 561. https://doi.org/10.1016/S1003-6326(16)64382-0

    Article  CAS  Google Scholar 

  29. Zang Q H, Chen H M, Zhang J, Cho J H, Jin X Y, and Shi Y K, Mater. Res. Innovations 19 (2015) S102. https://doi.org/10.1179/1432891715Z.0000000001524

    Article  CAS  Google Scholar 

  30. Wang J F, Li S, Wu Z S, Wang H B, Gao S Q, and Pan F S, J. Alloys Compd. 729 (2017) 545. https://doi.org/10.1016/j.jallcom.2017.09.193

    Article  CAS  Google Scholar 

  31. Hang Y J, Ma N H, Wang H W, and Li X F, Mater. Des. 29 (2008) 706. https://doi.org/10.1016/j.matdes.2007.03.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Algerian Directorate General of Scientific Research and Technological Development for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Hamana.

Ethics declarations

Conflict of interest

No potential conflict of interest is reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laouar, B., Hamana, D., Hayoune, A. et al. Analysis of the Impact of Thermomechanical Treatments on Internal Friction in AA6060 Alloy. Trans Indian Inst Met 76, 3079–3086 (2023). https://doi.org/10.1007/s12666-023-03098-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03098-7

Keywords

Navigation