Skip to main content
Log in

Synthesis, Characterizations and Applications of Iron Oxide-Based Nanocomposites

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

We have explored iron oxide nanocomposites (IONCs) for various important applications in science and technology. The fabrication of IONCs through thermal treatment, combustion, in situ polymerization, and green synthesis processes has been thoroughly examined. The review also covers the crucial applications of IONCs in the biomedical field, magnetic resonance, wastewater cleaning, and more. Additionally, the study delves into the various characterization methods and properties of IONCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bernal J D, Dasgupta D R, and Mackay A L, J Clay Miner 4 (1959) 15. https://doi.org/10.1180/claymin.1959.004.21.02

    Article  CAS  Google Scholar 

  2. Patil R M, Thorat N D, Shete P B, Bedge P A, Gavde S, Joshi M G, Tofail S A M, and Bohara A R, J Biochem Biophys Rep 13 (2018) 63. https://doi.org/10.1016/j.bbrep.2017.12.002

    Article  Google Scholar 

  3. Gustavo R G Jr, Miguel A S, Morigaki M K, Evaristo N, Alfredo G C, Francisco G E, Edson C P, Elisa B S, and Jair C C F, J Nanopart Res 17 (2015) 3092. https://doi.org/10.1007/s11051-015-3092-4

    Article  CAS  Google Scholar 

  4. Ren X, Chen C, Nagatsu M, and Wang X, Chem Eng J 170 (2011) 395. https://doi.org/10.1016/j.cej.2010.08.045

    Article  CAS  Google Scholar 

  5. Deng H, Zhang X R, Zeng G M, Gong J L, Niu Q Y, and Liang J, J Chem Eng 226 (2013) 189. https://doi.org/10.1016/j.cej.2013.04.045

    Article  CAS  Google Scholar 

  6. Tang W W, Zeng G M, Gong J L, Liu Y, Wang X Y, Liu Y Y, Liu Z F, Chen L, Zhang X R, and Tu D Z, Chem Eng J 8 (2015) 226. https://doi.org/10.1016/j.wse.2015.01.009

    Article  Google Scholar 

  7. Chang Q, Lin W, and Ying W, J Hazard Mater 184 (2010) 515. https://doi.org/10.1016/j.jhazmat.2010.08.066

    Article  CAS  Google Scholar 

  8. Huang Y, Wang W, Feng Q, and Dong F, J Saudi Chem Soc 21 (2017) 58. https://doi.org/10.1016/j.jscs.2013.09.005

    Article  CAS  Google Scholar 

  9. Ianoș R, Pacurariu C, Muntean S G, Muntean E, Nistor M A, and Niznansky D, J Alloys Comp 18 (2018) 1. https://doi.org/10.1016/j.jallcom.2018.01.240

    Article  CAS  Google Scholar 

  10. Hu J, Chen C, Zhu X, and Wang X, J Hazard Mat 162 (2009) 1542. https://doi.org/10.1016/j.jhazmat.2008.06.058

    Article  CAS  Google Scholar 

  11. Luo C, Tian Z, Yang B, Zhang L, and Yan S, J Chem E 234 (2013) 256. https://doi.org/10.1016/j.cej.2013.08.084

    Article  CAS  Google Scholar 

  12. Guo Z, Shin K, Karki A B, Young D P, Kaner R B, and Hahn H T, J Nanopart Res 11 (2009) 1441. https://doi.org/10.1007/s11051-008-9531-8

    Article  CAS  Google Scholar 

  13. Gong T, and Tang Y, Article Water Sci Technol 81 (2020) 170. https://doi.org/10.2166/wst.2020.099

    Article  CAS  Google Scholar 

  14. Ammar S H, Abdulnabi A W, and Abdul Kader H D F, J Environ Nanotechnol Monit Manag 13 (2020) 1. https://doi.org/10.1016/j.enmm.2020.100289

    Article  Google Scholar 

  15. Shukla S, Khan R, and Daverey A, Environ Technol Innov 24 (2021) 101924. https://doi.org/10.1016/j.eti.2021.101924

    Article  CAS  Google Scholar 

  16. Xie W, Guo Z, Gao F, Gao Q, Wang D, Liaw B, Cai Q, Sun X, Wang X, and Zhao L, Theranostics 8 (2018) 3284. https://doi.org/10.7150/thno.25220

    Article  CAS  Google Scholar 

  17. Fatimah I, Fadillah G, and Yudha S P, Arab J Chem 14 (2021) 103301. https://doi.org/10.1016/j.arabjc.2021.103301

    Article  CAS  Google Scholar 

  18. Indira T K, and Lakshmi P K, Intern J Pharma Sci Nanotechnol 3 (2010) 1035. https://doi.org/10.37285/ijpsn

    Article  CAS  Google Scholar 

  19. Tung L M, Cong N X, Huy L T, Lan N T, Phan V N, Hoa N Q, Vinh L K, Thinh N V, Tai L T, Ngo D T, Molhave K, Huy T Q, and Le A T, J Nanosci Nanotech 16 (2016) 5902. https://doi.org/10.1166/jnn.2016.11029

    Article  CAS  Google Scholar 

  20. Giulia M, Jos J M L, and Nico A J M S, Chem Soc Rev 45 (2016) 5085. https://doi.org/10.1039/C6CS00432F

    Article  Google Scholar 

  21. Wan X Y, Zhan Y Q, Long Z H, Zeng G Y, and He Y, Chem Eng J 296 (2017) 653. https://doi.org/10.1016/j.cej.2017.07.178

    Article  CAS  Google Scholar 

  22. Rajput S, Pittman C U Jr, and Mohan D, J Colloid Interface Sci 468 (2016) 334. https://doi.org/10.1016/j.jcis.2015.12.008

    Article  CAS  Google Scholar 

  23. Mandal T K, and Roy D B, J IJMSE 1 (2020) 1. https://doi.org/10.22068/ijmse.17.1.124

    Article  Google Scholar 

  24. Huong P T L, Huy L T, Lan H, Thang L H, An T T, Quy N V, Tuan P A, Alonso J, Phan M-H, and Le A-T, J Alloys Compd 17 (2017) 34374. https://doi.org/10.1016/j.jallcom.2017.12.178

    Article  CAS  Google Scholar 

  25. Dehghani N, Babamoradi M, Hajizadeh Z, and Maleki A, Chem Methodol 4 (2020) 92. https://doi.org/10.33945/SAMI/CHEMM.2020.1.8

    Article  CAS  Google Scholar 

  26. Aragaw T A, Bogale F M, and Aragaw B A, J Saudi Chem Soc 8 (2021) 1.

    Google Scholar 

  27. Su H, Ye Z, and Hmidi N, J Colloids Surfaces A Physicochem Eng Aspects 522 (2017) 161. https://doi.org/10.1016/j.colsurfa.2017.02.065

    Article  CAS  Google Scholar 

  28. Wei W, He Q, and Jiang C Z, J Nanoscale Res Lett 3 (2008) 397. https://doi.org/10.1007/s11671-008-9174-9

    Article  CAS  Google Scholar 

  29. Lou X, Huang J, Li T, Hu H, Hu B, and Zhang Y, J Mater Sci Mater Electron 25 (2014) 1193. https://doi.org/10.1007/s10854-014-1708-6

    Article  CAS  Google Scholar 

  30. Liu X D, Chen H, Liu S S, Ye L Q, and Li Y P, J Bull 62 (2015) 217. https://doi.org/10.1016/j.materresbull.2014.11.022

    Article  CAS  Google Scholar 

  31. LanHuong P T, ThanhHuy L, Lan H, Thang L H, TrongAn T, Van Quy N, AnhTuan P, Alonso J, Phan M-H, and Le A T, J Alloys Compd 739 (2018) 139. https://doi.org/10.1016/j.jallcom.2017.12.178

    Article  CAS  Google Scholar 

  32. Zhang J, Liu X, Wang L, Yang T, Guo X, Wu S, Wang S, and Zhang S, J Nanotech 22 (2011) 1. https://doi.org/10.1088/0957-4484/22/18/185501

    Article  CAS  Google Scholar 

  33. Nathan D M G T, and Jacob Melvin Boby S, J Alloys Compd 700 (2017) 67. https://doi.org/10.1016/j.jallcom.2017.01.070

    Article  CAS  Google Scholar 

  34. Icten O, Kose D A, Matissek S J, Misurelli J A, Elsawa S F, Hosmane N S, and Karan B Z, Mater Sci Eng C 92 (2018) 317. https://doi.org/10.1016/j.msec.2018.06.042

    Article  CAS  Google Scholar 

  35. Liu Y, Sun L, Wu J, Fang T, Cai R, and Wei A, J Mater Sci Eng B 194 (2015) 9. https://doi.org/10.1016/j.mseb.2014.12.021

    Article  CAS  Google Scholar 

  36. Guskos N, Glenis S, Zolnierkiewicz G, Typek J, Sibera D, Kaszewski J, Moszynski D, Lojkowski W, and Narkiewicz U, Phys Condensed Matter 405 (2010) 4054. https://doi.org/10.1016/j.physb.2010.06.055

    Article  CAS  Google Scholar 

  37. Banerjee P, Satapathy M, Mukhopahayay A, and Das P, Bioresour Bioprocess 1 (2014) 1.

    Article  Google Scholar 

  38. Shah M, Fawcett D, Sharma S, Tripathy S K, and Poinern G E J, Materials 8 (2015) 7278.

    Article  CAS  Google Scholar 

  39. Khaghani S, Ghanbari D, and Khaghani S, J Nanostruct 7 (2017) 175. https://doi.org/10.22052/JNS.2017.03.002

    Article  CAS  Google Scholar 

  40. Matinise N, Fuku X G, Kaviyarasu K, Mayedwa N, and Maaza M, Appl Surface Sci 406 (2017) 339.

    Article  CAS  Google Scholar 

  41. Matinise N, Kaviyarasu K, Mongwaketsi N, Khamlich S, Kotsedi L, Mayedwa N, and Maaza M, J Appl Sci 446 (2018) 66. https://doi.org/10.1016/j.apsusc.2018.02.187

    Article  CAS  Google Scholar 

  42. Wang T, Lin J, Chen Z, Megharaj M, and Naidu R, J Clean Prod 83 (2014) 413.

    Article  CAS  Google Scholar 

  43. Lin X, Xu Q, Gan L, Owens G, and Chen Z, J Colloid Interface Sci 608 (2022) 3159.

    Article  CAS  Google Scholar 

  44. Padhi D K, Panigrahi T K, Parida K, Singh S K, and Mishra P M, ACS Sustain Chem Eng 5 (2017) 10551.

    Article  CAS  Google Scholar 

  45. Nguyen N H, Padil V V T, Slaveykova V I, Cernik M, and Sevcu A, Nanoscale Res Lett 13 (2018) 1.

    Article  Google Scholar 

  46. Nawal D, Deora P R S, and Priya C G, Int J Mech Eng 8 (2022) 1555.

    Google Scholar 

  47. Khalilzadeh M A, Tajik S, Beitollahi H, and Venditti R A, J Ind Eng Chem Res 59 (2020) 4219. https://doi.org/10.1021/acs.iecr.9b06214

    Article  CAS  Google Scholar 

  48. Desalegn B, Megharaj M, Chen Z, and Naidu R, J Heliyon 5 (2019) 1. https://doi.org/10.1016/j.heliyon.2019.e01750

    Article  Google Scholar 

  49. Karpagavinayagam P, and Vedhi C, Vacuum 160 (2019) 286.

    Article  CAS  Google Scholar 

  50. Muthukumar H, Mohammed S N, Chandrasekaran N, Sekar A D, Pugazhendhi A, and Maheswaran M, Int J Hydrog Energy 44 (2019) 2407.

    Article  CAS  Google Scholar 

  51. Devi H S, Boda M A, Shah M A, Parveen S, and Wani A H, Green Process Synth 8 (2019) 38.

    Article  CAS  Google Scholar 

  52. Nasrazadani S, and Raman A, Corros Sci 34 (1993) 1355.

    Article  CAS  Google Scholar 

  53. Goncalves G R, Schettino M A Jr, Morigaki M K, Nunes E, Cunha A G, Emmerich F G, Passamani E C, Saitovitch E B, and Freitas J C C, J Nanopart Res 17 (2015) 1. https://doi.org/10.1007/s11051-015-3092-4

    Article  CAS  Google Scholar 

  54. Qiang Z, Chen Y M, Gurkan B, Guo Y, Cakmak M, Cavicchi K A, Zhu Y, and Bryan Vogt D, J Carbon 116 (2017) 286. https://doi.org/10.1016/j.carbon.2017.01.093

    Article  CAS  Google Scholar 

  55. Safarikova M, Ptackova L, Kibrikova I, and Safarik I, J Chemosphere 59 (2005) 831. https://doi.org/10.1016/j.chemosphere.2004.10.062

    Article  CAS  Google Scholar 

  56. Safarik I, Horska K, and Safarikova M, J Cereal Sci 53 (2011) 78. https://doi.org/10.1016/j.jcs.2010.09.010

    Article  CAS  Google Scholar 

  57. Safarik I, and Safarikova M, J Phys Proc 9 (2010) 274. https://doi.org/10.1016/j.phpro.2010.11.061

    Article  CAS  Google Scholar 

  58. Parra da Silva F, and Rossi L M, J Tetrahedron 70 (2014) 3314. https://doi.org/10.1016/j.tet.2013.10.051

    Article  CAS  Google Scholar 

  59. Bourlinos A B, Zboril R, and Petridis D, J Microporous Mesoporous Mater 58 (2003) 155. https://doi.org/10.1016/S1387-1811(02)00613-3

    Article  CAS  Google Scholar 

  60. Nah I W, Hwang K Y, Jeon C H, and Choi H B, J Miner Eng 19 (2006) 1452. https://doi.org/10.1016/j.mineng.2005.12.006

    Article  CAS  Google Scholar 

  61. Wang Y, Liu X Y, Xu X, Yang Y, Huang L H, He Z Y, Xu Y H, Chen J J, and Feng Z S, J Mater Res Bull 101 (2018) 340. https://doi.org/10.1016/j.materresbull.2018.01.035

    Article  CAS  Google Scholar 

  62. Huong P T L, Huy L T, Lan H, Thang L H, An T T, Quy N V, Tuan P A, Alonso J, Phan M H, and Le A T, J Alloys Compd (2018). https://doi.org/10.1016/j.jallcom.2017.12.178

    Article  Google Scholar 

  63. Ali Q, Ahmed W, Lal S, and Sen T, J Mater Today Proc 4 (2017) 57. https://doi.org/10.1016/j.matpr.2017.01.193

    Article  Google Scholar 

  64. Ansari N, and Payami Z, J Nanostruct 10 (2020) 39. https://doi.org/10.22052/JNS.2020.01.005

    Article  CAS  Google Scholar 

  65. Soler M A G, J Magnetism Magnetic Mat 467 (2018) 37. https://doi.org/10.1016/j.jmmm.2018.07.035

    Article  CAS  Google Scholar 

  66. Fu C, and Ravindra M N, J Bioinspired Biomimetic Nanobiomater 1 (2012) 229. https://doi.org/10.1680/bbn.12.00014

    Article  CAS  Google Scholar 

  67. Kittel C, J Phys Rev 70 (1946) 965. https://doi.org/10.1103/PhysRev.70.965

    Article  CAS  Google Scholar 

  68. Chudnovsky E M, and Gunther L, J Phys Rev Lett 60 (1988) 661. https://doi.org/10.1103/PhysRevLett.60.661

    Article  CAS  Google Scholar 

  69. DeSouza S, J Surf Coat Technol 201 (2007) 7574. https://doi.org/10.1016/j.surfcoat.2007.02.027

    Article  CAS  Google Scholar 

  70. Arruebo M, Fernandez-Pacheco R, Ibarra M R, and Santamaria J, Magnetic nanoparticles for drug delivery. Nano Today 2 (3), (2007) 22–32.

    Article  Google Scholar 

  71. Clark L C, and Lyons C, J Ann N Y Acad Sci 102 (1962) 29. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x

    Article  CAS  Google Scholar 

  72. Lu J, Moon K S, Kim B K, and Wong C P, J Polymer (Guildf) 48 (2007) 1510. https://doi.org/10.1016/j.polymer.2007.01.057

    Article  CAS  Google Scholar 

  73. Rokovic M K, Kvastek K, Horvat-Radosevic V, and Duic L, J Corros Sci 49 (2007) 2567. https://doi.org/10.1016/j.corsci.2006.12.010

    Article  CAS  Google Scholar 

  74. Segal E, Tchoudakov R, Narkis M, Siegmann A, and Wei Y, J Sens Actuat B Chem 104 (2005) 140. https://doi.org/10.1016/j.snb.2004.05.002

    Article  CAS  Google Scholar 

  75. Xiao L F, Ai X P, Cao Y L, Wang Y D, and Yang H X, J Electrochem Commun 7 (2005) 589. https://doi.org/10.1016/j.elecom.2005.04.006

    Article  CAS  Google Scholar 

  76. Zare E N, Abdollahi T, and Motahari A, Arab J Chem 13 (2020) 2331. https://doi.org/10.1016/j.arabjc.2018.04.016

    Article  CAS  Google Scholar 

  77. World Health Organization, Water, Sanitation and Hygiene Links to Health: Facts and Figures (2004).

  78. World Health Organization, Guidelines for Drinking-Water Quality: recommendations, World Health Organization (2004).

  79. Asgher M, J Water Air Soil Pollut 5 (2012) 2417. https://doi.org/10.1007/s11270-011-1034-z

    Article  CAS  Google Scholar 

  80. Fagundes-klen M R, Cervelin P C, Veit M T, Goncalves G C, Bergamasco R, and Dasilva F V, J Water Air Soil Pollut 223 (2012) 4369. https://doi.org/10.1007/s11270-012-1201-x

    Article  CAS  Google Scholar 

  81. Shirzad S M, Samarghandi M, Azizian S, Kim W, and Lee S, J Environ Eng Res 16 (2011) 55. https://doi.org/10.4491/eer.2011.16.2.55

    Article  Google Scholar 

  82. Makarchuk O V, Dontsova T A, and Astrelin I M, J Nanoscale Res Lett 11 (2016) 161. https://doi.org/10.1186/s11671-016-1364-2

    Article  CAS  Google Scholar 

  83. Nadeem F, Jamil N, Moazzam A, Ahmad S R, Lateef A, Khalid A, Qadir A, Ali A, and Munir S, Pol J Environ Stud 28 (2019) 2311. https://doi.org/10.15244/pjoes/91076

    Article  Google Scholar 

  84. Acharya A, and Pal P K, NanoImpact 19 (2020) 100232

    Article  Google Scholar 

  85. Chen G, Li Y, Bick M, and Chen J, Chem Rev 120 (2020) 3668.

    Article  CAS  Google Scholar 

  86. Kumar N, and Kumbhat S, Essentials in Nanoscience and Nanotechnology, Wiley, New York (2016), p 1.

    Google Scholar 

  87. Li X, Cui M, Lee Y, Choi J, and Khim J, J Roy Soc Chem 9 (2019) 22153. https://doi.org/10.1039/c9ra04084f

    Article  CAS  Google Scholar 

  88. Ziabari S A M, Babamoradi M, Hajizadeh Z, and Maleki A, J Eur Chem Commun (2020). https://doi.org/10.33945/SAMI/ECC.2020.4.4

    Article  Google Scholar 

  89. Khammarnia S, Akbari A, Kakhki M S E, and Saffari J, J Nanostruct 10 (2020) 239. https://doi.org/10.22052/JNS.2020.02.005

    Article  CAS  Google Scholar 

  90. Mi T, Cai Y, Wang Q, Habibul N, Ma X, Su Z, and Wu W, J RSC Adv 10 (2020) 10309. https://doi.org/10.1039/d0ra01044h

    Article  CAS  Google Scholar 

  91. Ngo T D, Le T M H, Nguyen T H, Nguyen T V, Nguyen T A, Le T L, Nguyen T T, Tran T T V, Le T B T, and Doan N H, Int J Polym Sci (2016). https://doi.org/10.1155/2016/7478161

    Article  Google Scholar 

  92. Zemtsova E G, Ponomareva A N, Panchuk V V, and Galiullina L F, J Rev Adv Mater Sci 52 (2017) 82. https://doi.org/10.1002/adma.201203547

    Article  CAS  Google Scholar 

  93. Khandanlou R, Ahmad M B, Shameli K, and Kalantari K, J Mol 18 (2013) 6597. https://doi.org/10.3390/molecules18066597

    Article  CAS  Google Scholar 

  94. Yang W, Yang X, Li X, Islam ZMd, Dong Y, Fu Y, Liu X, Fu F, and Zhu Y, J World Sci 15 (2020) 2050032. https://doi.org/10.1142/S1793292020500320

    Article  CAS  Google Scholar 

  95. Dehghani N, Babamoradi M, Hajizadeh Z, and Maleki A, J Chem Methodol 4 (2020) 92. https://doi.org/10.33945/SAMI/CHEMM.2020.1.8

    Article  CAS  Google Scholar 

  96. Badhai P, Kashyap S, and Behera S K, J Environ Nanotech Monit Manag 13 (2020) 1. https://doi.org/10.1016/j.enmm.2019.100282

    Article  Google Scholar 

  97. Ammar H S, Abdulnabi A W, and Kader D H A, J Environ Nanotechnol Monit Manag 13 (2020) 1. https://doi.org/10.1016/j.enmm.2020.100289

    Article  Google Scholar 

  98. Khammarnia S, Akbari A, Ekrami-Kakhki M S, and Saffari J, J Nanostruct 10 (2020) 239. https://doi.org/10.22052/JNS.2020.02.005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Roy.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, D.B., Varpe, A., Bhandari, M. et al. Synthesis, Characterizations and Applications of Iron Oxide-Based Nanocomposites. Trans Indian Inst Met 76, 2905–2913 (2023). https://doi.org/10.1007/s12666-023-03086-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03086-x

Keywords

Navigation