Skip to main content
Log in

Corrosion, Fatigue, and Wear Performance of Friction Stir Welded Aluminum Metal Matrix Composites: A Review

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the last few decades, there was tremendous growth of aluminum metal matrix composites (AMMC) in aeronautical, aerospace, defense, and automotive industries due to their lightweight, high strength, and durability. Many researchers have attempted to improve the strength, toughness, and corrosion resistance of AMMC using friction stir welding (FSW). Moreover, the mechanical and microstructural characterization of FSW AMMC was extensively investigated by researchers for the process parameters such as spindle speed, feed rate, tool profile, and tilt angle. However, the researchers have failed to elaborate on the corrosion, fatigue, and wear characterization of various friction stir welded AMMCs. The present review article mainly focuses on the corrosion behavior of AMMC FSW joints with the process parameters such as welding speed, feed rate, and tool material. Further, this article discusses the wear and fatigue life behavior of friction stir welded AMMC by analyzing current trends and advancements in FSW with various parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Raja S, Muhamad M R, Jamaludin M F, et al., J Mater Res Technol 9 (2020) 16459.

    Article  CAS  Google Scholar 

  2. Menu A, Options A, Article F, et al., J Compos Mater 54 (2020) 2985.

    Article  Google Scholar 

  3. Anandh C J, Gopi S, Mohan D G, et al., J Adhes Sci Technol 36 (2021) 1.

    Google Scholar 

  4. Janasekaran S, Lemon S M B, and Yusof F, Materwiss Werksttech 50 (2019) 346.

    Article  Google Scholar 

  5. Yadav A, Ghosh A, and Kumar A, J Mater Process Technol 248 (2017) 262.

    Article  CAS  Google Scholar 

  6. Wang L L, Wei H L, Xue J X, et al., J Mater Process Technol 251 (2018) 369.

    Article  CAS  Google Scholar 

  7. Johnson P, and Murugan N, J. Mater. Res. Technol. 9 (2020) 3967.

    Article  CAS  Google Scholar 

  8. Niu P, Li W, Zhang Z, et al., J Mater Sci Technol 33 (2017) 987.

    Article  Google Scholar 

  9. Sachin D, Uday K N, Rajamurugan G, et al., Mater Today Proc 46 (2021) 7082.

    Article  CAS  Google Scholar 

  10. Rajamurugan G, Deepankumar S, Ramakrishnan A, et al., Corrosion Characteristics on Friction Stir Welding of Dissimilar AA2014/AA6061 Alloy for Automobile Application, SAE Technical Papers, Warrendale, Pennsylvania (2019).

    Book  Google Scholar 

  11. Li Y Z, Zan Y N, Wang Q Z, et al., J Mater Process Technol 273 (2019) 116242.

    Article  CAS  Google Scholar 

  12. Thomas W M, Nicholas E D, Needham J C, Murch M G, Templesmith P D C J, Friction stir butt welding (1991)

  13. El-Sayed M M, Shash A Y, Abd-Rabou M, et al., J Adv Join Process 3 (2021) 100059.

    Article  Google Scholar 

  14. Heidarzadeh A, Mironov S, Kaibyshev R, et al., Prog Mater Sci 117 (2020) 100752.

    Article  Google Scholar 

  15. Mishra R S, and Ma Z Y, Mater Sci Eng R Rep 50 (2005) 1.

    Article  Google Scholar 

  16. Prasad L, Kumar A, Jaiswal R, et al., Materwiss Werksttech 53 (2022) 888.

    Article  Google Scholar 

  17. Wang G, Zhao Y, and Hao Y, J Mater Sci Technol 34 (2018) 73.

    Article  CAS  Google Scholar 

  18. Meng X, Huang Y, Cao J, et al., Prog Mater Sci 115 (2021) 100706.

    Article  CAS  Google Scholar 

  19. Mallick P K, Materials Design and Manufacturing for Lightweight Vehicles, Elsevier, New York (2021).

    Google Scholar 

  20. Palanivel R, Dinaharan I, Laubscher R F, et al., Mater Des 106 (2016) 195.

    Article  CAS  Google Scholar 

  21. Kartsonakis I A, Dragatogiannis D A, Koumoulos E P, et al., Mater Des 102 (2016) 56.

    Article  CAS  Google Scholar 

  22. Orozco-Caballero A, Álvarez-Leal M, Hidalgo-Manrique P, et al., Mater Sci Eng A 680 (2017) 329.

    Article  CAS  Google Scholar 

  23. Sharma D K, Mahant D, and Upadhyay G, Mater Today Proc 26 (2020) 506.

    Article  CAS  Google Scholar 

  24. ShivaKumar G N, and Rajamurugan G, Proc Inst Mech Eng Part L J Mater. Des Appl 237 (2023) 1231.

    Google Scholar 

  25. Rahul A, and Mukherjee M, JOM 2023 (2023) 1.

    Google Scholar 

  26. Satish Kumar T, Suganya Priyadharshini G, Shalini S, et al., Trans Indian Inst Met 72 (2019) 1593.

    Article  CAS  Google Scholar 

  27. Prabhakar G V N B, Dumpala L, and Ravi K N, Trans Indian Inst Met 73 (2020) 2955.

    Article  CAS  Google Scholar 

  28. Tan Z, Li J, and Zhang Z, J Mater Res Technol 12 (2021) 1898.

    Article  CAS  Google Scholar 

  29. Patel M, and Chaudhary B, Trans Indian Inst Met 76 (2023) 581.

    Article  CAS  Google Scholar 

  30. Lu I K, and Reynolds A P, Prog Addit Manuf 6 (2021) 471.

    Article  Google Scholar 

  31. Uday K N, and Rajamurugan G, Proc Inst Mech Eng C J Mech Eng Sci 236 (2022) 4904.

    Article  Google Scholar 

  32. Ali K S A, Mohanavel V, Vendan S A, et al., Materials 14 (2021) 3110.

    Article  CAS  Google Scholar 

  33. Kok M, J Mater Process Technol 161 (2005) 381.

    Article  CAS  Google Scholar 

  34. Jones D, Principles and Prevention of Corrosion, Macmillan Pub. Co., New York (1992).

    Google Scholar 

  35. Rodriguez R I, Jordon J B, Allison P G, et al., Mater Sci Eng A 742 (2019) 255.

    Article  CAS  Google Scholar 

  36. El-Morsy A W, Ghanem M, and Bahaitham H, Eng Technol Appl Sci Res 8 (2018) 2493.

    Article  Google Scholar 

  37. Quazi M M, Ishak M, Arslan A, et al., J Adhes Sci Technol 32 (2018) 625.

    Article  CAS  Google Scholar 

  38. Ashok Kumar R, and Thansekhar M R, J Mech Sci Technol 32 (2018) 3299.

    Article  Google Scholar 

  39. Dong P, Sun D, Wang B, et al., Mater Des 54 (2014) 760.

    Article  CAS  Google Scholar 

  40. Jafarlou H, Mohammadzadeh Jamalian H, and Tamjidi E M, J Manuf Process 32 (2018) 425.

    Article  Google Scholar 

  41. Vijaya Kumar P, Madhusudhan Reddy G, and Srinivasa R K, Def Technol 11 (2015) 166.

    Article  Google Scholar 

  42. Venkatesh B N, and Bhagyashekar M S, Int J Eng Sci 17612 (2018) 1.

    Google Scholar 

  43. Sathish T, Kaladgi A R R, Mohanavel V, et al., Materials 14 (2021) 2782.

    Article  CAS  Google Scholar 

  44. Shamsipur A, Anvari A, and Keyvani A, Int J Miner Metall Mater 25 (2018) 967.

    Article  CAS  Google Scholar 

  45. Abu-warda N, López M D, González B, et al., Met Mater Int 27 (2021) 2867.

    Article  CAS  Google Scholar 

  46. Chandrashekar A, Chaluvaraju B V, Afzal A, et al., Symmetry (Basel) 13 (2021) 537.

    Article  CAS  Google Scholar 

  47. Almomani M, Hassan A M, Qasim T, et al., Corros Eng Sci Technol 48 (2013) 346.

    Article  CAS  Google Scholar 

  48. Daniyal M, and Akhtar S, J Build Pathol Rehabil 5 (2020) 1.

    Article  Google Scholar 

  49. Saeidi M, Barmouz M, and Givi M K B, Mater Res 18 (2015) 1156.

    Article  CAS  Google Scholar 

  50. Moharami A, Razaghian A, Babaei B, et al., J Compos Mater 54 (2020) 4035.

    Article  CAS  Google Scholar 

  51. Li N, Li W, Yang X, et al., Surf Coat Technol 349 (2018) 1069.

    Article  CAS  Google Scholar 

  52. G01 Committee ASTM International, Standard Test Method for Measurement of Corrosion Potentials of Aluminum Alloys, ASTM International

  53. Qu N, Zhu D, and Chan K, Scr Mater 54 (2006) 1421.

    Article  CAS  Google Scholar 

  54. Napłoszek-Bilnik I, Budniok A, Łosiewicz B, et al., Thin Solid Films 474 (2005) 146.

    Article  Google Scholar 

  55. Nouri A, and Wen C, Surf Coat Modif Met Biomater 2015 (2015) 3.

    Google Scholar 

  56. Bahrami M, Helmi N, Dehghani K, et al., Mater Sci Eng A 595 (2014) 173.

    Article  CAS  Google Scholar 

  57. Ceschini L, Boromei I, Minak G, et al., Compos Part A Appl Sci Manuf 38 (2007) 1200.

    Article  Google Scholar 

  58. E08 Committee ASTM International, Standard Test Method for Strain-Controlled Fatigue Testing.

  59. Ceschini L, Boromei I, Minak G, et al., Compos Sci Technol 67 (2007) 605.

    Article  CAS  Google Scholar 

  60. Salih O S, Ou H, Wei X, et al., Mater Sci Eng A 742 (2019) 78.

    Article  CAS  Google Scholar 

  61. Ni D R, Chen D L, Xiao B L, et al., Int J Fatigue 55 (2013) 64.

    Article  CAS  Google Scholar 

  62. Bodaghi M, and Dehghani K, Int J Adv Manuf Technol 88 (2017) 2651.

    Article  Google Scholar 

  63. Singh T, Tiwari S K, and Shukla D K, Eng Res Express 1 (2019) 025052.

    Article  Google Scholar 

  64. Patel V K, and Rani K, Stroj Cas 67 (2017) 77.

    Google Scholar 

  65. Farahmand Nikoo M, Parvin N, and Bahrami M, Proc Inst Mech Eng Part L J Mater Des Appl 231 (2017) 534.

    CAS  Google Scholar 

  66. Dinaharan I, and Murugan N, Mater Sci Eng A 543 (2012) 257.

    Article  CAS  Google Scholar 

  67. Abioye T E, Zuhailawati H, Anasyida A S, et al., J Mater Res Technol 8 (2019) 3917.

    Article  CAS  Google Scholar 

  68. Mirjavadi S S, Alipour M, Emamian S, et al., J Alloys Compd 712 (2017) 795.

    Article  CAS  Google Scholar 

  69. Prasad R, Kumar H, Kumar P, et al., J Mater Eng Perform 30 (2021) 4194.

    Article  CAS  Google Scholar 

  70. Farahmand Nikoo M, Azizi H, Parvin N, et al., J Manuf Process 22 (2016) 90.

    Article  Google Scholar 

  71. Kumar N, and Patel V K, SN Appl Sci 2 (2020) 1.

    Google Scholar 

  72. Paidar M, Asgari A, Ojo O O, et al., J Mater Eng Perform 27 (2018) 1714.

    Article  CAS  Google Scholar 

  73. Mata O C, Pérez A F M, Medina G Y P, et al., Soldag Insp 21 (2016) 220.

    Article  CAS  Google Scholar 

  74. Zhang Z, and Tan Z, J Mech Mater Struct 14 (2019) 537.

    Article  Google Scholar 

  75. Zuo L, Shao W, Zhang X, et al., Wear 498–499 (2022) 204331.

    Article  Google Scholar 

  76. Adesina A Y, Al-Badour F A, and Gasem Z M, J Manuf Process 33 (2018) 111.

    Article  Google Scholar 

  77. Bist A, Saini J S, and Sharma V, Proc Inst Mech Eng Part E J Process Mech Eng 235 (2021) 1522.

    Article  CAS  Google Scholar 

Download references

Funding

The author(s) received no financial support for this article's research, authorship, and publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rajamurugan.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflict of interest concerning this article's research, authorship, and publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthilraj, K., Rajamurugan, G. Corrosion, Fatigue, and Wear Performance of Friction Stir Welded Aluminum Metal Matrix Composites: A Review. Trans Indian Inst Met 76, 3201–3218 (2023). https://doi.org/10.1007/s12666-023-03038-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03038-5

Keywords

Navigation