Skip to main content
Log in

Effects of Graded Powder Dosage Factors on the Densification of LPBF Processed Inconel 718

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present work offers insights into real-time powder management (graded powder dosage factor) and its effects on the densification behaviour of the 3D parts fabricated using the laser powder bed fusion (LPBF) technology. Inconel718 samples were printed using three different powder dosages in a graded manner (higher to lower along the build direction) at various locations on the build platform. The porosities of printed samples with different powder dosages were evaluated using an optical microscope. The porosities were categorised into two variants, viz.; inter-micropore and super-micropore. The inter-micropores were higher than the super-micropores at all locations under the graded powder dosages scheme. Moreover, the overall porosities were marginally lower at a build platform's R1, C1 and L1 locations than others (L2 and R2). Therefore, preferable locations while LPBF processing arrived by reinforcing the effective graded powder dosage scheme enabling cost-efficient LPBF processing strategies. This study enables the printing of moderate-sized functional prototypes uninterruptedly and without sacrificing the quality of virgin feedstock powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vinodh K, Tigga A K, and Barad S, J. Manuf. Process. 66 (2021) 189. https://doi.org/10.1016/j.jmapro.2021.04.020

    Article  Google Scholar 

  2. Subramaniyan A K, Anigani S R, Mathias S, Pathania A, Raghupatruni P, and Yadav S S, Proc. Inst. Mech. Eng. Part J. Mater. Des. Appl. (2021). https://doi.org/10.1177/14644207211037342

    Article  Google Scholar 

  3. Kushwaha A, Subramaniyan A K, Bommanahalli Kenchappa N, and Barad S, Mater. Lett. 308 (2022) 131138. https://doi.org/10.1016/j.matlet.2021.131138

    Article  CAS  Google Scholar 

  4. Nagesha B K, Kumar S A, Rajeswari S, Barad S, and Pathania A, J. Mater. Eng. Perform. (2022). https://doi.org/10.1007/s11665-022-06890-6

    Article  Google Scholar 

  5. Subramaniyan A K, Reddy A S, Mathias S, Shrivastava A, and Raghupatruni P, Surf. Coat. Technol. 425 (2021) 127679. https://doi.org/10.1016/j.surfcoat.2021.127679

    Article  CAS  Google Scholar 

  6. Pathania A, Subramaniyan A K, and Nagesha B K, Prog. Addit. Manuf. (2022). https://doi.org/10.1007/s40964-022-00306-6

    Article  Google Scholar 

  7. Shrivastava A, Anand Kumar S, Nagesha B K, and Suresh T N, Opt. Laser Technol. 144 (2021) 107448. https://doi.org/10.1016/j.optlastec.2021.107448

    Article  CAS  Google Scholar 

  8. Wang W, Wang S, Zhang X, Chen F, Xu Y, and Tian Y, J. Manuf. Process. 64 (2021) 530. https://doi.org/10.1016/j.jmapro.2021.02.004

    Article  Google Scholar 

  9. Arunachalam R M, Mannan M A, and Spowage A C, Int. J. Mach. Tools Manuf. 44 (2004) 1481. https://doi.org/10.1016/j.ijmachtools.2004.05.005

    Article  Google Scholar 

  10. Pérez-Ruiz J D, Marin F, Martínez S, Lamikiz A, Urbikain G, and López de Lacalle L N, Mech. Syst. Signal Process. 168 (2022) 108675. https://doi.org/10.1016/j.ymssp.2021.108675

    Article  Google Scholar 

  11. Pérez-Ruiz J D, de Lacalle L N L, Urbikain G, Pereira O, Martínez S, and Bris J, Int. J. Mach. Tools Manuf. 170 (2021) 103801. https://doi.org/10.1016/j.ijmachtools.2021.103801

    Article  Google Scholar 

  12. Moussaoui K, Rubio W, Mousseigne M, Sultan T, and Rezai F, Mater. Sci. Eng. A. 735 (2018) 182. https://doi.org/10.1016/j.msea.2018.08.037

    Article  CAS  Google Scholar 

  13. Coro A, Macareno L M, Aguirrebeitia J, and López de Lacalle L N, Metals. 9 (2019) 932. https://doi.org/10.3390/met9090932

    Article  Google Scholar 

  14. Gong H, Rafi K, Gu H, Starr T, and Stucker B, Addit. Manuf. 1–4 (2014) 87. https://doi.org/10.1016/j.addma.2014.08.002

    Article  Google Scholar 

  15. Nan W, Pasha M, and Ghadiri M, Powder Technol. 372 (2020) 466. https://doi.org/10.1016/j.powtec.2020.05.119

    Article  CAS  Google Scholar 

  16. He Y, Gardy J, Hassanpour A, and Bayly A E, Mater. Des. 196 (2020) 109102. https://doi.org/10.1016/j.matdes.2020.109102

    Article  Google Scholar 

  17. Lutter-Günther M, Gebbe C, Kamps T, Seidel C, and Reinhart G, Prod. Eng. 12 (2018) 377.

    Article  Google Scholar 

  18. Scime L, and Beuth J, Addit. Manuf. 19 (2018) 114. https://doi.org/10.1016/j.addma.2017.11.009

    Article  Google Scholar 

  19. Han Q, Gu H, and Setchi R, Powder Technol. 352 (2019) 91. https://doi.org/10.1016/j.powtec.2019.04.057

    Article  CAS  Google Scholar 

  20. Ladewig A, Schlick G, Fisser M, Schulze V, and Glatzel U, Addit. Manuf. 10 (2016) 1–9. https://doi.org/10.1016/j.addma.2016.01.004

    Article  Google Scholar 

  21. Grace J R, Can. J. Chem. Eng. 64 (1986) 353.

    Article  CAS  Google Scholar 

  22. Hamaker H C, Physica. 4 (1937) 1058. https://doi.org/10.1016/S0031-8914(37)80203-7

    Article  CAS  Google Scholar 

  23. Geldart D, Powder Technol. 7 (1973) 285. https://doi.org/10.1016/0032-5910(73)80037-3

    Article  CAS  Google Scholar 

  24. Meier C, Weissbach R, Weinberg J, Wall W A, Hart A J, Critical influences of particle size and adhesion on the powder layer uniformity in metal additive manufacturing. J. Mater. Process. Technol. 266 (2019) 484–501. https://doi.org/10.1016/j.jmatprotec.2018.10.037

  25. Yavari R, Smoqi Z, Riensche A, Bevans B, Kobir H, Mendoza H, Song H, Cole K, and Rao P, Mater. Des. 204 (2021) 109685. https://doi.org/10.1016/j.matdes.2021.109685

    Article  CAS  Google Scholar 

  26. Pal S, Ramadani R, Gubeljak N, Bončina T, Hudák R, Drstvenšek I, and Brajlih T, Results Phys. 26 (2021) 104417. https://doi.org/10.1016/j.rinp.2021.104417

    Article  Google Scholar 

  27. Shamir M, Syed A K, Janik V, Biswal R, and Zhang X, Mater. Charact. 169 (2020) 110576. https://doi.org/10.1016/j.matchar.2020.110576

    Article  CAS  Google Scholar 

  28. Tammas-Williams S, Withers P J, Todd I, and Prangnell P B, Sci. Rep. 7 (2017) 1.

    Article  CAS  Google Scholar 

  29. Murakami Y, Int. J. Fatigue. 41 (2012) 2. https://doi.org/10.1016/j.ijfatigue.2011.12.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramaniyan Anand Kumar.

Ethics declarations

Conflict of interest

We would like to acknowledge authors do not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tigga, A.K., Kumar, S.A., Kenchappa, N.B. et al. Effects of Graded Powder Dosage Factors on the Densification of LPBF Processed Inconel 718. Trans Indian Inst Met 76, 3473–3481 (2023). https://doi.org/10.1007/s12666-023-03027-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03027-8

Keywords

Navigation