Skip to main content
Log in

Direct Synthesis of Tungsten Carbide by Solid-State Carbothermic Reduction of Tungsten Trioxide

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Key parameters (milling time, temperature, time, and reduction atmosphere) on the preparation of tungsten carbide by carbothermic reduction of WO3 were investigated. SEM, XRD, TG/DTA, and hardness tests were used for characterizations. TG/DTA showed that the endothermic reactions related to the 10 h milled WO3 reduction and its conversion to tungsten and tungsten sub-oxides occur between 700 and 826 °C. Subsequently, the formation of tungsten carbide occurs in the temperature range of 1000–1287 °C. The amount of tungsten carbide increases, and the uniformity of the structure improves with an increment in the reduction temperature. The tungsten carbide formation became complete with increasing process time, and the WO3 was converted to tungsten carbide in 6 h. The reduction process can almost be completed in the hydrogen atmosphere. Moreover, results showed that increasing the milling time up to 30 h improves the tungsten carbide formation leading to an improvement in structural homogeneity and an increase in hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Upadhyaya G S, Cemented tungsten carbides production, properties, and testing, Noyes Publications, Westwood, New Jersey (1998).

    Google Scholar 

  2. Claridge J B, York A P E, Brungs A J, Marquez-Alvarez C, Sloan J, Tsang S C, and Green M L H, J Catal 180 (1998) 85. https://doi.org/10.1006/jcat.1998.2260

    Article  CAS  Google Scholar 

  3. Lassner E, and Schubert W D, Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds, Kluwer Academics/Plenum Publishers, New York (1999).

    Book  Google Scholar 

  4. Fang Z Z, Wang X, Ryu T, Hwang K S, and Sohn H Y, Int J Refract Metals Hard Mater 27 (2009) 288. https://doi.org/10.1016/j.ijrmhm.2008.07.011

    Article  CAS  Google Scholar 

  5. Sakaki M, Bafghi MSh, Vahdati Khaki J, Zhang Q, and Saito F, Int J Refract Metals Hard Mater 36 (2013) 116. https://doi.org/10.1016/j.ijrmhm.2012.08.002

    Article  CAS  Google Scholar 

  6. Sakaki M, Bafghi MSh, Vahdati Khaki J, Zhang Q, Kano J, and Saito F, J Alloys Compd 480 (2009) 824. https://doi.org/10.1016/j.jallcom.2009.02.088

    Article  CAS  Google Scholar 

  7. Alonso F C N, Morales M L Z, Salas A U, and Becerril J E B, Int J Miner Process 20 (1987) 137. https://doi.org/10.1016/0301-7516(87)90022-6

    Article  Google Scholar 

  8. Bolokang S, Banganayi C, and Phasha M, Int J Refract Metals Hard Mater 28 (2010) 211. https://doi.org/10.1016/j.ijrmhm.2009.09.006

    Article  CAS  Google Scholar 

  9. Decker S, Löfberg A, and Bastin J M, Catal Lett 44 (1997) 229–239. https://doi.org/10.1023/A:1018985227289

    Article  CAS  Google Scholar 

  10. Tan G L, Adv Mater Res 66 (2009) 135.

    Article  CAS  Google Scholar 

  11. S. Vallance, Microwave synthesis and mechanistic examination of the transition metal carbides, Ph D Thesis, University of Nottingham, (2009).

  12. Pervikov A V, Krinitcyn M G, Glazkova E A, Rodkevich N G, and Lerner M I, Int J Refract Metals Hard Mater 103 (2022) 105733. https://doi.org/10.1016/j.ijrmhm.2021.105733

    Article  CAS  Google Scholar 

  13. Pak A Y, Shanenkov I I, Mamontov G Y, and Kokorina A I, Int J Refract Metals Hard Mater 93 (2020) 105343. https://doi.org/10.1016/j.ijrmhm.2020.105343

    Article  CAS  Google Scholar 

  14. Wang K F, Sun G D, Wu Y D, Zhang G H, and Chou K C, Int J Refract Metals Hard Mater 84 (2019) 104975. https://doi.org/10.1016/j.ijrmhm.2019.104975

    Article  CAS  Google Scholar 

  15. Wu Y, Dang J, Lv Z, and Zhang R, Int J Refract Metals Hard Mater 76 (2018) 99. https://doi.org/10.1016/j.ijrmhm.2018.06.002

    Article  CAS  Google Scholar 

  16. Tripathy H, Sudha C, Paul V T, Thirumurugesan R, Prasanthi T N, Sundar R, Vijayashanthi N, Parameswaran P, and Raju S, Int J Refract Metals Hard Mater 104 (2022) 105804. https://doi.org/10.1016/j.ijrmhm.2022.105804

    Article  CAS  Google Scholar 

  17. Enneti R K, Int J Refract Metals Hard Mater 53 (2015) 111. https://doi.org/10.1016/j.ijrmhm.2015.06.011

    Article  CAS  Google Scholar 

  18. Chen W H, Nayak P K, Lin H T, Chang M P, and Huang J L, Int J Refract Metals Hard Mater 47 (2014) 44. https://doi.org/10.1016/j.ijrmhm.2014.06.015

    Article  CAS  Google Scholar 

  19. Yang R, Xing T, Xu R, and Li M, Int J Refract Metals Hard Mater 29 (2011) 138. https://doi.org/10.1016/j.ijrmhm.2010.09.008

    Article  CAS  Google Scholar 

  20. Chen Y, Yang R, Zhang C, Song J, Che Y, and He J, Int J Refract Metals Hard Mater 106 (2022) 105869. https://doi.org/10.1016/j.ijrmhm.2022.105869

    Article  CAS  Google Scholar 

  21. Kong Y, Liu Y, Ye J, and Li J, Int J Refract Metals Hard Mater 98 (2021) 105557. https://doi.org/10.1016/j.ijrmhm.2021.105557

    Article  CAS  Google Scholar 

  22. Ma J, and Zhu S G, Int J Refract Metals Hard Mater 28 (2010) 623. https://doi.org/10.1016/j.ijrmhm.2010.06.004

    Article  CAS  Google Scholar 

  23. Yusoff M I, and Hussain Z, Int J Mater Mech Manuf 1 (2013) 283.

    CAS  Google Scholar 

  24. Ma J, Zhu S G, Ding H, and Gu W S, Defect Diffus Forum 312 (2011) 248. https://doi.org/10.4028/www.scientific.net/DDF.312-315.248

    Article  CAS  Google Scholar 

  25. Zakeri M, and Rahimipour M R, Adv Powder Technol 23 (2012) 31. https://doi.org/10.1016/j.apt.2010.12.001

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by University of Tehran (Grant No. 6409).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Pourabdoli or Sh. Raygan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beighi, M., Pourabdoli, M., Raygan, S. et al. Direct Synthesis of Tungsten Carbide by Solid-State Carbothermic Reduction of Tungsten Trioxide. Trans Indian Inst Met 76, 3455–3461 (2023). https://doi.org/10.1007/s12666-023-03025-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03025-w

Keywords

Navigation