Skip to main content
Log in

Constitutive Modelling of Hot Deformation Behaviour of Mg-0.5wt% Ce Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Ce addition in Mg improves its restricted ductility owing to inadequate number of deformation systems being hcp structure. Hot compression conducted on Mg-0.5wt% Ce alloy to identify the suitable deformation regime in processing maps. The flow stress (σ) response of such plastic deformation is governed by constitutive equations, established by a physical model on 0.1 to 0.5 true strain (ε) depends on hyperbolic-sinusoidal Arrhenius-type equations and also initiated with Zener–Hollomon parameter (Z) as specified by strain rate (\(\dot{\varepsilon }\)) and deformation temperature. The average absolute relative error (AARE) and correlation coefficient (R) measure the correctness of the developed constitutive equation showing reasonable predictions of the modified flow stress. Processing map shows dynamic recovery (DRV) domain at 673–723 K and 0.001–0.1 s−1, corresponding to the suitable hot working regime, and also identifies unstable zones of flow stress behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Basu T, and Al-Sammann G, Gottstein. Mater Sci Eng A 579 (2013) 50–56.

    Article  CAS  Google Scholar 

  2. Polmear I J, Magnesium alloys and applications. Mater Sci Tech 10 (1994) 1–16.

    Article  CAS  Google Scholar 

  3. Prasad Y V R K, Rao K P, Hort N, and Kainer K U, Mater Letters 62 (2008) 4207–4209.

    Article  CAS  Google Scholar 

  4. Kainer K U, Von Buch F, and Kainer K U (eds), Magnesium alloys and technology, Wiley-VCH Publication, DGM, Weinheim (2003).

    Google Scholar 

  5. Kaiser F, Bohlen J, Letzig D, and Kainer K U, Mater Sci For 419–422 (2003) 315–320.

    Google Scholar 

  6. Robert C S, Magnesium and its alloys, Wiley, New York (1960).

    Google Scholar 

  7. McDonald JC, Transaction AIME, (1941) 143–179.

  8. Akhtar A, and Teghtsoonian E, Acta Meta 17 (1969) 1339–1349.

    Article  CAS  Google Scholar 

  9. Chino Y, Kado M, and Mabuchi M, Acta Mater 56 (2008) 387–394.

    Article  CAS  Google Scholar 

  10. Panda D, Sabat R K, Suwas S, and Sahoo S K, Philos Mag 102 (12), (2022) 1091–1120.

    Article  CAS  Google Scholar 

  11. Kim W J, Lee J B, Kim W Y, Jeong H T, and Jeong H G, Scripta Mater 56 (2007) 309–312.

    Article  CAS  Google Scholar 

  12. Al-Samman T, and Gottstein G, Mater Sci and Eng A 490 (2008) 411–420.

    Article  Google Scholar 

  13. Mabuchi M, Ameyama K, Iwasaki H, and Higashi K, Acta Mater 47 (7), (1999) 2047–2057.

    Article  CAS  Google Scholar 

  14. Raja K Mishra, Anil K Gupta, Rama Rao P, Anil K Sachdev, Arun M Kumar, and Alan A Luo,Scripta Mater (2008) 59: 562 565

  15. Sabat R K, Brahme A P, Mishra R K, Inal K, and Suwas S, Acta Mater 161 (2018) 246–257.

    Article  CAS  Google Scholar 

  16. Slooff F A, Dzwonczyk J S, Zhou J, Duszczyk J, and Katgerman L, Mater Sci Eng A 527 (2010) 735–744.

    Article  Google Scholar 

  17. Sabat R K, Mishra R K, and Sachdev A K, Satyam Suwas. Mater Letters 153 (2015) 158–161.

    Article  CAS  Google Scholar 

  18. Frost H J, and Ashby M F, Deformation-mechanism maps: the plasticity and creep of metals and ceramics, Pergamon Press, London (1982).

    Google Scholar 

  19. Prasad Y V R K, Gegel H L, Doraivelu S M, Malas J C, Morgan J T, Lark K A, and Barker D R, Metal Trans A 15 (1984) 1883–1892.

    Article  Google Scholar 

  20. Roucoules C, Hodgson P D, Yue S, and Jonas J J, Meta and Mater Trans A 25 (2), (1994) 389–400.

    Article  Google Scholar 

  21. Davenport S B, Silk N J, Sparks C N, and Sellars C M, Mater Sc Technol 16 (2000) 539–546.

    Article  CAS  Google Scholar 

  22. Zerilli P J, and Armstrong R W, J Appl Phys 61 (1987) 1816–1825.

    Article  CAS  Google Scholar 

  23. Sellars C M, and McTegart W J, Acta Metall. 14 (1966) 1136–1138.

    Article  CAS  Google Scholar 

  24. Liu J, Wang X, and Liu J, Y Liu. H Li, C Wang, J Alloys Compound 782 (2019) 224–234.

    Article  CAS  Google Scholar 

  25. Zener C, and Hollomon J H, J Appl Phys 15 (1944) 22–32.

    Article  Google Scholar 

  26. Spigarelli S, High temperature deformation and microstructural instability in AZ31 magnesium alloy Mater Sci Eng A (2013) 570: 135–48.

  27. Sivakesavam O, and Prasad Y V R K, Mater Sci Eng A 232 (2002) 270–277.

    Article  Google Scholar 

  28. Chen Q, Xia X, Yuan B, Shu D, Zhao Z, and Han J, Mater Sci Eng A 593 (2014) 38–47.

    Article  CAS  Google Scholar 

  29. Lin Y C, Ming-Song Chen. Jue Zhong, Comput Mater Sci 42 (2008) 470–477.

    Article  CAS  Google Scholar 

  30. Kumar A, Gupta A, Khatirkar R K, Bibhanshu N, and Suwas S, ISIJ International 58 (10), (2018) 1840–1849.

    Article  CAS  Google Scholar 

  31. Ge G, Zhang L, Xin J, and Lin J, Mark Aindow & Zhang L. Scientific Reports 8 (2018) 5453.

    Article  Google Scholar 

  32. Wellstead P E, Introduction to Physical System Modelling, Academic Press Ltd. (1979), p 25–33, p 68–73, p 183–200.

  33. Prasad Y V R K, and Seshacharyulu T, Inter Mater Rev 43 (1998) 243–258.

    Article  CAS  Google Scholar 

  34. Zeigler H, in Progress in Solid Mechanics, (eds) Sneddon I N, and Hill R, North-Holland Publishing Co, Amsterdam (1963), pp 93–193.

    Google Scholar 

  35. Kalyan Kumar A K S, M.Sc. (Engg) Thesis, Indian Institute of Science, Bangalore, India, (1987)

  36. Prasad Y V R K, Indian. J. Technol. 28 (1990) 435–451.

    CAS  Google Scholar 

  37. Srinivasan N, and Prasad Y V R K, Rama Rao. P, Mater Sci Eng A 476 (2008) 146–156.

    Article  Google Scholar 

  38. Prasad Y, Rao K P, Sasidhar S, Hot working guide: a compendium of processing maps, ASM International, (2015)

  39. Ding X, Zhao F, Shuang Y, Ma L, Chu Z, and Zhao C, J Mater Process Technol 276 (276), (2020) 116325.

    Article  CAS  Google Scholar 

  40. Jingfeng W, Feizhou X, Shijie L, Song H, and Fusheng P, Rare Metal Mater Eng 47 (2018) 1700–1707.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge Prof. Satyam Suwas for useful discussions, and Laboratory for Texture and Related Studies, Department of Materials Engineering, IISc, Bangalore, for providing the materials and experimental facilities. Authors, BKD, GSA and KSS, acknowledge the support from UGC – Networking Resource Centre for Materials (NRC-M) at IISc Bangalore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhomik Ketari Deogade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deogade, B.K., Bibhanshu, N., Kalsar, R. et al. Constitutive Modelling of Hot Deformation Behaviour of Mg-0.5wt% Ce Alloy. Trans Indian Inst Met 76, 2953–2962 (2023). https://doi.org/10.1007/s12666-023-03022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03022-z

Keywords

Navigation