Skip to main content
Log in

Hot Deformation Behavior and Microstructural Evolution of a Ni-based Alloy Turbine Disc

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Hot deformation behavior and microstructural evolution of a Ni-based alloy turbine disc were investigated with the ranges of 1025–1100 °C and 0.001–1 s−1. According to work hardening (WH) curve, the critical strain (stress) for dynamic recrystallization (DRX) was calculated; The DRX volume fraction models were constructed to simulate microstructure evolution behavior by Avrami equation. The microstructure analysis of the studied alloy was investigated by OM and TEM. At 1075 °C/0.1 s−1, the intragranular γ' phases can effectively prevent dislocations movement, forming a high density of dislocation substructures and subgrain boundaries in the grain. The critical stresses for DRX increase with the increase of strain rates and the decrease of temperatures, and the critical strains for DRX increase with decreasing temperature. DDRX are the main nucleation mechanisms, and the grain boundaries provide nucleation sites for dynamic recrystallized grains. The DRX behaviors were predicted by DRX volume fraction models, and the simulated results are close to the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lin A Q, Liu G W, Yu X X, Chang R, and Feng Q, Int Commun Heat Mass Transf 136 (2022) 106170.

    Article  Google Scholar 

  2. Wang Y X, Zhao M X, Li Z, Li X B, Yin F C, and He J N, J Alloys Compd 900 (2022) 163286.

    Article  CAS  Google Scholar 

  3. Rae C M, J Mater Sci Technol 25 (2009) 479.

    Article  CAS  Google Scholar 

  4. Sujata M, Madan M, Raghavendra K, Venkataswamy M A, and Bhaumik S K, Trans Indian Inst Met 63 (2010) 681.

    Article  CAS  Google Scholar 

  5. Zhang H K, Li Y, Ma H C, Zhang P, Ma T F, and Huang K, Mater Sci Eng A 846 (2022) 143257.

    Article  CAS  Google Scholar 

  6. Yan Z H, Yu Y D, Qian J H, Sang Y C, and Yao Y M, Trans Indian Inst Met 73 (2020) 2435.

    Article  CAS  Google Scholar 

  7. Joun M S, Razali M K, Chung S H, and Irani M, J Mater Res Technol 18 (2022) 3894.

    Article  CAS  Google Scholar 

  8. Soheily-Koroyeh S, Sheikh H, and Dehnavi M R, Trans Indian Inst Met 75 (2022) 2651.

    Article  CAS  Google Scholar 

  9. Yang P F, Zhou M, Zhang Y, Jia Y L, Tian B H, Liu Y, Li X, and Volinsky A A, Mater Charact 181 (2021) 111502.

    Article  CAS  Google Scholar 

  10. Ebrahimi G R, Momeni A, Ezatpour H R, Jahazi M, and Bocher P, Mater Sci Eng A 744 (2019) 376.

    Article  CAS  Google Scholar 

  11. Zhang J J, Yi Y P, He H, Huang S Q, Mao X C, Guo W F, You W, Guo Y L, Fong D, and Tang J G, Mater Charact 181 (2021) 111492.

    Article  CAS  Google Scholar 

  12. Li B, Chu Z J, Du Y, Zhou W, and Zhou X, J Mater Eng Perform 29 (2020) 7774.

    Article  CAS  Google Scholar 

  13. Huang K, and Logé R E, Mater Des 111 (2016) 548.

    Article  CAS  Google Scholar 

  14. Gao P, Chen L L, Luo R, Peng C T, Shen D H, Liu T, and Chen X N, Trans Indian Inst Met 74 (2021) 2729.

    Article  CAS  Google Scholar 

  15. Liu P, Zhang R, Yuan Y, Cui C Y, Zhou Y Z, and Sun X F, J Alloys Compd 831 (2020) 154618.

    Article  CAS  Google Scholar 

  16. Yang P R, Liu C X, Guo Q Y, and Liu Y C, J Mater Res Technol 72 (2021) 162.

    CAS  Google Scholar 

  17. Zhao G D, Zang X M, Jing Y, Lü N, and Wu J J, Mater Sci Eng A 815 (2021) 141293.

    Article  CAS  Google Scholar 

  18. Detrois M, Antonov S, Tin S, Jablonski P D, and Hawk J A, Mater Charact 157 (2019) 109915.

    Article  CAS  Google Scholar 

  19. Sun B, Zhang T B, Song L, and Zhang L, J Mater Res Technol 18 (2022) 1436.

    Article  CAS  Google Scholar 

  20. Zhu H, and Ou H, Mater Sci Eng A 832 (2022) 142473.

    Article  CAS  Google Scholar 

  21. Kañetas P J P, Calvo J, Rodriguez-Calvillo P, Marrero J M C, Antuñano M A Z, and Guerrero-Mata M P, Metals 10 (2020) 1466.

    Article  Google Scholar 

  22. Liu G W, Mao C L, Ding R, Yu L M, Liu C X, and Liu Y C, J Nucl Mater 557 (2021) 153285.

    Article  CAS  Google Scholar 

  23. Chen M S, Lin Y C, Li K K, and Zhou Y, Comput Mater Sci 122 (2016) 150.

    Article  CAS  Google Scholar 

  24. Ashtiani H R R, Ahmadi H, Heidari M, and Shahsavari P, Trans Indian Inst Met 75 (2022) 1999.

    Article  CAS  Google Scholar 

  25. Kim S W, Son H W, Jung T K, Chun Y B, Park Y H, Lee J W, and Hyun S K, Met Mater Int 25 (2019) 888.

    Article  CAS  Google Scholar 

  26. Poliak E I, and Jonas J J, Acta Mater 44 (1996) 127.

    Article  CAS  Google Scholar 

  27. Jonas J J, Quelennec X, Jiang L, and Martin É, Acta Mater 57 (2009) 2748.

    Article  CAS  Google Scholar 

  28. Ji G L, Li Q, Ding K Y, Yang L, and Li L, J Alloys Compd 648 (2015) 397.

    Article  CAS  Google Scholar 

  29. Wan Z, Sun Y, Hu L, and Yu H, Mater Des 122 (2017) 11.

    Article  CAS  Google Scholar 

  30. Quelennec X, and Jonas J J, ISIJ Int 52 (2012) 1145.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the Key Projects of Hubei Provincial Department of Education (No. D20201206), the Open Research Fund of Hubei Engineering Research Center for Graphite Additive Manufacturing Technology and Equipment (No. HRCGAM202102), National Natural Science Foundation of China (No. 52031017) and Special Fund Project for Independent Innovation of AECC (ZZCX-2019-013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Chen, W., Du, Y. et al. Hot Deformation Behavior and Microstructural Evolution of a Ni-based Alloy Turbine Disc. Trans Indian Inst Met 76, 3313–3322 (2023). https://doi.org/10.1007/s12666-023-02987-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-02987-1

Keywords

Navigation