Skip to main content

Advertisement

Log in

First-Principles Study on the Effect of Ir Doping on the Mechanical and Thermodynamic Properties of Pt–20Rh Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Ir doping is an effective method used to strengthen and toughen Pt–Rh alloy and improve its high-temperature properties. However, Ir and Pt–Rh alloys are infinite solid solution alloys, and their microstructures are difficult to observe to understand their mechanism of action. Therefore, the stability and mechanical and thermal properties of a series of Pt–20Rh–xIr (x = 0, 5, 10 and 20) alloys were calculated using first-principle studies based on density functional theory. The results show that with an increase in the Ir content, the Young’s modulus and hardness of Pt–20Rh–xIr initially decrease and then increase. The largest Young’s modulus (436.243 GPa) and hardness (18.453 GPa) were achieved when the Ir content was 20 wt%. Meanwhile, the thermodynamic calculation results show that with an increase in the Ir content, the thermal stability of Pt–20Rh–xIr was significantly improved, and the thermal expansion coefficient of Pt–20Rh–xIr was only 63% of that observed for Pt–20Rh. The above results imply that the addition of 20 wt% Ir gave the best effect on improving the strength, toughness and high temperature properties of Pt–20Rh alloy. This study provides theoretical guidance for further application of Pt–Rh alloy in the aviation field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jiang K, Zhao D, Guo S, Zhang X, Zhu X, Guo J, Lu G, and Huang X, Sci Adv 3 (2017) e1601705.

    Article  Google Scholar 

  2. Rao C R M, and Reddi G S, TrAC Trends Anal Chem 19 (2000) 565.

    Article  CAS  Google Scholar 

  3. Seymour RJ, O’Farrelly JI, Potter LC (2000) Kirk-Othmer Encycl Chem Technol

  4. Dereli G, Cagin T, Uludogan M, and Tomak M, Philos Mag Lett 75 (1997) 209.

    Article  CAS  Google Scholar 

  5. Kalinin I A, Roslyakov I V, Tsymbarenko D M, Bograchev D A, Krivetskiy V V, and Napolskii K S, Sens Actuator A Phys 317 (2021) 112457.

    Article  CAS  Google Scholar 

  6. Rdzawski Z M, and Stobrawa J P, J Mater Process Technol 153 (2004) 681.

    Article  Google Scholar 

  7. Dai Y, Ma Q Y, Liu W T, Hu F P, Zhang Y, Yang Z L, Tang H Y, Wei G B, and Xie W D, Mater Sci Technol 34 (2018) 654.

    Article  CAS  Google Scholar 

  8. Zhonghua S, Xiaodong P, Weidong X, Weiting L, and Zonglun Y, Rare Metal Mater Eng 41 (2012) 402.

    Article  Google Scholar 

  9. Hu F, Yu T, Liu W, Yang Y, Wei G, Luo X, Tang H, Hansen N, Huang X, and Xie W, Mater Sci Eng A 765 (2019) 138305.

    Article  CAS  Google Scholar 

  10. Wilson F G, and Stanley R G, High Temp Technol 2 (1984) 129.

    CAS  Google Scholar 

  11. Okamoto H, J Ph Equilib Diffus 34 (2013) 176.

    Article  CAS  Google Scholar 

  12. Yao X, Mao Y, and Guo Y F, Philos Mag 101 (2021) 1033.

    Article  CAS  Google Scholar 

  13. Lanzillo N A, J Appl Phys 121 (2017) 175104.

    Article  Google Scholar 

  14. Hamann D R, Schlüter M, and Chiang C, Phys Rev Lett 43 (1979) 1494.

    Article  CAS  Google Scholar 

  15. Wang S, Xiong J, Li D, Zeng Q, Xiong M, and Chai X, Mater Lett 282 (2021) 128754.

    Article  CAS  Google Scholar 

  16. Lee S J, Kwon T S, Nahm K, and Kim C K, J Phys Condens Matter 2 (1990) 3253.

    Article  CAS  Google Scholar 

  17. Blanco M A, Francisco E, and Luana V, Comput Phys Commun 158 (2004) 57.

    Article  CAS  Google Scholar 

  18. Hammer B, Hansen L B, and Nørskov J K, Phys Rev B 59 (1999) 7413.

    Article  Google Scholar 

  19. Perdew J P, and Wang Y, Phys Rev B 45 (23), (1992) 13244.

    Article  CAS  Google Scholar 

  20. Karki B B, Ackland G J, and Crain J, J Phys Condens Matter 9 (1997) 8579.

    Article  CAS  Google Scholar 

  21. Zuo L, Humbert M, and Esling C, J Appl Crystallogr 25 (1992) 751.

    Article  Google Scholar 

  22. Bellaiche L, and Vanderbilt D, Phys Rev B 61 (2000) 7877.

    Article  CAS  Google Scholar 

  23. Birch F, Phys Rev 71 (1947) 809.

    Article  CAS  Google Scholar 

  24. Sin’Ko G V, and Smirnov N A, J Phys Condens Matter 14 (2002) 6989.

    Article  Google Scholar 

  25. Pugh S F, Lond Edinb Dublin Philos Mag J Sci 45 (1954) 823.

    Article  CAS  Google Scholar 

  26. Chen X Q, Niu H, Li D, and Li Y, Intermetallics 19 (2011) 1275.

    Article  CAS  Google Scholar 

  27. Otero-de-la-Roza A, Abbasi-Pérez D, and Luaña V, Comput Phys Commun 182 (2011) 2232.

    Article  CAS  Google Scholar 

  28. Andritsos E I, Zarkadoula E, Phillips A E, Dove M T, Walker C J, Brazhkin V V, and Trachenko K, J Phys Condens Matter 25 (2013) 235401.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the National Natural Science Foundation of China (No. 52161005), The Major Science and Technology Program of Yunnan, China (2019ZE001 and 202002AB080001-1) and Natural Science Foundation of Yunnan, China (2019FA048 and 2019FI020), The Basic Research Plan of Yunnan Science and Technology Department (grant Nos. 202101AU070098 and 202203ZA080001); Kunming University of Science and Technology University-level talent training program (grant Nos. KKZ3202056044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Haijun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chengling, W., Wanbing, Y., Hua, D. et al. First-Principles Study on the Effect of Ir Doping on the Mechanical and Thermodynamic Properties of Pt–20Rh Alloy. Trans Indian Inst Met 76, 3393–3401 (2023). https://doi.org/10.1007/s12666-023-02974-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-02974-6

Keywords

Navigation