Skip to main content
Log in

Effect of N2/Ar Ratio on Microstructure and Tribological Property of Arc Plasma-Assisted Nitrided 40CrNiMoA Steel

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

40CrNiMoA steel was nitrided by arc plasma-assisted nitriding (PAN) process at 430 °C, 1 Pa for 3 h with different N2/Ar ratios. Their structures, micrographs, microhardness profiles and tribological properties were investigated by X-ray diffraction (XRD), optical microscope, SEM, Vickers microhardness tester and pin-on-disk tribometer, respectively. All of the nitrided layers were primarily consisted of the γ-Fe4N and ε-Fe3N. The thickness of compound layers increased with the N2/Ar ratio increasing. The maximum thickness of the compound layer was about 6 μm after nitriding, while the thickness of nitrided layer reached about 230 μm. The surface microhardness and wear resistance of the steel were significantly improved. Its maximum surface microhardness enhanced as 3 times (approx.) as that of the substrate. The wear mechanism changed from adhesive wear to abrasive wear. In addition, the nitrided sample treated at N2/Ar ratio of 75%:25% had the optimum abrasion resistance and lowest wear rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Díaz-Guillén J C, Vargas-Gutiérrez G, Granda-Gutiérrez E E, Zamarripa-Piña J S, Pérez-Aguilar S I, Candelas-Ramírez J, and Álvarez-Contreras L, J Mater Sci Technol 29 (2013) 287. https://doi.org/10.1016/j.jmst.2013.01.017

    Article  CAS  Google Scholar 

  2. Zhong H, Dai L, Yue Y, Wang B, Zhang X, Tan C, Ma M, and Liu R, Mater Sci Technol 32 (2016) 275. https://doi.org/10.1080/02670836.2015.1121341

    Article  CAS  Google Scholar 

  3. Peng T, Chen Y, Liu X, Wu M, Lu Y, and Hu J, Surf Coat Technol 403 (2020) 126403. https://doi.org/10.1016/j.surfcoat.2020.126403

    Article  CAS  Google Scholar 

  4. de Souza M F, Serrao L F, Pardal J M, Tavares S S M, and Fonseca M C, Int J Adv Manuf Technol 120 (2022) 1123. https://doi.org/10.1007/s00170-022-08880-3

    Article  Google Scholar 

  5. Yang W J, Zhang M, Zhao Y H, Shen M L, Lei H, Xu L, Xiao J Q, Gong J, Yu B H, and Sun C, Surf Coat Technol 298 (2016) 64. https://doi.org/10.1016/j.surfcoat.2016.04.045

    Article  CAS  Google Scholar 

  6. Naeem M, Iqbal J, Abrar M, Khan K H, Díaz-Guillén J C, Lopez-Badillo C M, Shafiq M, Zaka-ul-Islam M, and Zakaullah M, Surf Coat Technol 350 (2018) 48. https://doi.org/10.1016/j.surfcoat.2018.07.004

    Article  CAS  Google Scholar 

  7. Kovaci H, Hamsalihoglu I, Yetim A F, and Celik A, Surf Coat Technol 358 (2019) 256. https://doi.org/10.1016/j.surfcoat.2018.11.043

    Article  CAS  Google Scholar 

  8. Shen H Y, and Wang L, Surf Coat Technol 378 (2019) 124953. https://doi.org/10.1016/j.surfcoat.2019.124953

    Article  CAS  Google Scholar 

  9. Sirin S Y, Int J Fatigue 123 (2019) 1. https://doi.org/10.1016/j.ijfatigue.2019.01.001

    Article  CAS  Google Scholar 

  10. Sirin S Y, Sirin K, and Kaluc E, Mater Sci Eng A 564 (2013) 232. https://doi.org/10.1016/j.msea.2012.11.029

    Article  CAS  Google Scholar 

  11. Conci M D, Bozzi A C, and Franco A R, Wear 317 (2014) 188. https://doi.org/10.1016/j.wear.2014.05.012

    Article  CAS  Google Scholar 

  12. Nayebpashaee N, Soltanieh M, and Kheirandish S A, Mater Manuf Process 31 (2016) 1192. https://doi.org/10.1080/10426914.2015.1019106

    Article  CAS  Google Scholar 

  13. Czerwiec T, Michel H, and Bergmann E, Surf Coat Technol 108–109 (1998) 182. https://doi.org/10.1016/S0257-8972(98)00555-6

    Article  Google Scholar 

  14. Goncharenko I M, Grigoriev S V, Lopatin I V, Koval N N, Schanin P M, Tukhfatullin A A, Ivanov Y F, and Strumilova N V, Surf Coat Technol 169 (2003) 419. https://doi.org/10.1016/S0257-8972(03)00144-0

    Article  CAS  Google Scholar 

  15. Zhang M, Lin G Q, Dong C, and Wen L S, Surf Coat Technol 201 (2007) 7252. https://doi.org/10.1016/j.surfcoat.2007.01.043

    Article  CAS  Google Scholar 

  16. Zhao Y H, Yu B H, Dong L M, Du H, and Xiao J Q, Surf Coat Technol 210 (2012) 90. https://doi.org/10.1016/j.surfcoat.2012.08.070

    Article  CAS  Google Scholar 

  17. Borgioli F, Galvanetto E, and Bacci T, Mater Charact 95 (2014) 278. https://doi.org/10.1016/j.matchar.2014.07.006

    Article  CAS  Google Scholar 

  18. Tan C, Kuang T, Zhou K, Zhu H, Deng Y, Li X, Cai P, and Liu Z, Ceram Int 42 (2016) 10793. https://doi.org/10.1016/j.ceramint.2016.03.207

    Article  CAS  Google Scholar 

  19. Deng Y, Tan C, Wang Y, Chen L, Cai P, Kuang T, Lei S, and Zhou K, Ceram Int 43 (2017) 8721. https://doi.org/10.1016/j.ceramint.2017.03.209

    Article  CAS  Google Scholar 

  20. Moreno-Bárcenas A, Alvarado-Orozco J M, Carmona J G, Mondragón-Rodríguez G C, González-Hernández J, and García-García A, Surf Coat Technol 374 (2019) 327. https://doi.org/10.1016/j.surfcoat.2019.06.014

    Article  CAS  Google Scholar 

  21. Sun F, Liu X L, Luo S Q, Xiang D D, Ba D C, Lin Z, and Song G Q, Surf Coat Technol 439 (2022) 128449. https://doi.org/10.1016/j.surfcoat.2022.128449

    Article  CAS  Google Scholar 

  22. Song M A, Lee Y W, and Chung T H, Phys Plasmas 18 (2011) 023504. https://doi.org/10.1063/1.3554706

    Article  CAS  Google Scholar 

  23. Kumar N, Roy B, Ganguli B, and Deb B, Trans Indian Inst Metals 74 (2021) 2027. https://doi.org/10.1007/s12666-021-02299-2

    Article  CAS  Google Scholar 

  24. Nakata K, Yamauchi W, Akamatsu K, and Ushio M, Surf Coat Technol 174 (2003) 1206. https://doi.org/10.1016/S0257-8972(03)00459-6

    Article  CAS  Google Scholar 

  25. Bergelt T, Landgraf P, Grund T, Brauer G, and Lampke T, Surf Coat Technol 447 (2022) 128813. https://doi.org/10.1016/j.surfcoat.2022.128813

    Article  CAS  Google Scholar 

  26. Renevier N, Collignon P, Michel H, and Czerwiec T, Surf Coat Technol 86 (1996) 285. https://doi.org/10.1016/S0257-8972(96)02952-0

    Article  Google Scholar 

  27. Wierzchon T, Rudnicki J, Hering M, and Niedbala R, Vacuum 48 (1997) 499. https://doi.org/10.1016/S0042-207X(97)00028-6

    Article  CAS  Google Scholar 

  28. Sun J, Li J, Xie J M, Yang Y, Wu W P, Zhou X, Zhang S H, and Wang Q M, J Mater Res Technol 19 (2022) 4804. https://doi.org/10.1016/j.jmrt.2022.07.028

    Article  CAS  Google Scholar 

  29. Guo T, Li H T, Jiang B L, Xing Y B, and Zhang X Y, Acta Metall Sinica 54 (2018) 463. https://doi.org/10.11900/0412.1961.2017.00121

    Article  CAS  Google Scholar 

  30. Sun Y, and Bell T, Mater Sci Eng A 140 (1991) 419. https://doi.org/10.1016/0921-5093(91)90458-Y

    Article  Google Scholar 

  31. Ahangarani S, Sabour A R, Mahboubi F, and Shahrabi T, J Alloys Compd 484 (2009) 222. https://doi.org/10.1016/j.jallcom.2009.03.161

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Yang, Z., Li, H. et al. Effect of N2/Ar Ratio on Microstructure and Tribological Property of Arc Plasma-Assisted Nitrided 40CrNiMoA Steel. Trans Indian Inst Met 76, 2735–2743 (2023). https://doi.org/10.1007/s12666-023-02966-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-02966-6

Keywords

Navigation