Skip to main content
Log in

Study on Glass Transition Temperatures in Metallic Glass Formers

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Two ideal glass transition temperatures (Tg0 and T0) and the measured glass transition temperature Tg,0.33 are comparatively studied, which is conducive to understanding the nature of glass transition more deeply. It is found that the difference between parameters ϕ and ξ is the cause of the discrepancy between Tg0 and T0. Meanwhile, the degrees of departure between (Tg0 or T0) and Tg,0.33 increase with ϕ and ξ, respectively. In addition, the range of ϕ is from 0.037 to 0.349 for metallic glasses, and the range of ξ is from 0.223 to 0.929 for metallic glass-forming liquids. Nearly all of ξ are greater than ϕ for metallic glass-forming systems, which leads to that the degree of departure between T0 and Tg,0.33 for metallic glass-forming liquids is generally greater than the degree of departure between Tg0 and Tg,0.33 for metallic glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statements

Data will be made available on reasonable request.

References

  1. Angell C A, Science 267 (1995) 1924. https://doi.org/10.1126/science.267.5206.1924

    Article  CAS  Google Scholar 

  2. Debenedetti P G, and Stillinger F H, Nature 410 (2001) 259. https://doi.org/10.1038/35065704

    Article  CAS  Google Scholar 

  3. Böhmer R, Ngai K L, Angell C A, and Plazek D J, J. Chem. Phys. 99 (1993) 4201. https://doi.org/10.1063/1.466117

    Article  Google Scholar 

  4. Angell C A, J. Non-Cryst. Solids 131–133 (1991) 13. https://doi.org/10.1016/0022-3093(91)90266-9

    Article  Google Scholar 

  5. Brüning R, and Samwer K, Phys. Rev. B 46 (1992) 11318. https://doi.org/10.1103/PhysRevB.46.11318

    Article  Google Scholar 

  6. Chen H S, J. Non-Cryst. Solids 27 (1978) 257. https://doi.org/10.1016/0022-3093(78)90128-x

    Article  CAS  Google Scholar 

  7. Busch R, Bakke E, and Johnson W L, Acta Mater. 46 (1998) 4725. https://doi.org/10.1016/s1359-6454(98)00122-0

    Article  CAS  Google Scholar 

  8. Zhang B, Wang RJ, Zhao DQ, Pan MX & Wang WH, Phys. Rev. B, 70 (2004). https://doi.org/10.1103/PhysRevB.70.224208

  9. Zhang Z, Wang W H, and Hirotsu Y, Mater. Sci. Eng. A 385 (2004) 38. https://doi.org/10.1016/j.msea.2004.04.050

    Article  CAS  Google Scholar 

  10. Jiang Q K, Zhang G Q, Yang L, Wang X D, Saksl K, Franz H, Wunderlich R, Fecht H, and Jiang J Z, Acta Mater. 55 (2007) 4409. https://doi.org/10.1016/j.actamat.2007.04.021

    Article  CAS  Google Scholar 

  11. Wang J, Huang L, Zhu S, Li Q, Guan S, and Zhang T, J. Alloys Compd. 576 (2013) 375–379. https://doi.org/10.1016/j.jallcom.2013.05.218

    Article  CAS  Google Scholar 

  12. Fulcher G S, J. Am. Ceram. Soc. 8 (1925) 339. https://doi.org/10.1111/j.1151-2916.1925.tb16731.x

    Article  CAS  Google Scholar 

  13. Tammann G, and Hesse W, Z. Anorg. Allg. Chem. 156 (1926) 245. https://doi.org/10.1002/zaac.19261560121

    Article  CAS  Google Scholar 

  14. Perera D N, J. Phys. Condens. Matter 11 (1999) 3807. https://doi.org/10.1088/0953-8984/11/19/303

    Article  CAS  Google Scholar 

  15. Sethna J P, Europhys. Lett. 6 (1988) 529. https://doi.org/10.1209/0295-5075/6/6/010

    Article  CAS  Google Scholar 

  16. Busch R, and Johnson W L, Appl. Phys. Lett. 72 (1998) 2695. https://doi.org/10.1063/1.121102

    Article  CAS  Google Scholar 

  17. Glade S C, and Johnson W L, J. Appl. Phys. 87 (2000) 7249. https://doi.org/10.1063/1.373411

    Article  CAS  Google Scholar 

  18. Legg B A, Schroers J, and Busch R, Acta Mater. 55 (2007) 1109. https://doi.org/10.1016/j.actamat.2006.09.024

    Article  CAS  Google Scholar 

  19. Busch R, Liu W, and Johnson W L, J. Appl. Phys. 83 (1998) 4134. https://doi.org/10.1063/1.367167

    Article  CAS  Google Scholar 

  20. Busch R, Masuhr A, and Johnson W L, Mate. Sci. Eng. A 304–306 (2001) 97. https://doi.org/10.1016/s0921-5093(00)01458-1

    Article  Google Scholar 

  21. Gross O, Bochtler B, Stolpe M, Hechler S, Hembree W, Busch R, and Gallino I, Acta Mater. 132 (2017) 118. https://doi.org/10.1016/j.actamat.2017.04.030

    Article  CAS  Google Scholar 

  22. Löwen H, Phys. Rep. 237 (1994) 249. https://doi.org/10.1016/0370-1573(94)90017-5

    Article  Google Scholar 

  23. Busch R, Kim Y J, and Johnson W L, J. Appl. Phys. 77 (1995) 4039. https://doi.org/10.1063/1.359485

    Article  CAS  Google Scholar 

  24. Okamoto PR, Lam NQ & Rehn LE, 1999, 1–135.

  25. Kauzmann W, Chem. Rev. 43 (1948) 219. https://doi.org/10.1021/cr60135a002

    Article  CAS  Google Scholar 

  26. Fan G J, Löffler J F, Wunderlich R K, and Fecht H J, Acta Mater. 52 (2004) 667. https://doi.org/10.1016/j.actamat.2003.10.003

    Article  CAS  Google Scholar 

  27. Révész Á, Kis-Tóth Á, Varga L K, Lábár J L, and Spassov T, Int. J. Hydrogen Energy 39 (2014) 9230. https://doi.org/10.1016/j.ijhydene.2014.03.214

    Article  CAS  Google Scholar 

  28. Song K, Bian X, Lv X, GuO J, Li G, and Xie M, Mater. Sci. Eng. A 506 (2009) 87. https://doi.org/10.1016/j.msea.2008.11.043

    Article  CAS  Google Scholar 

  29. Zhao Z F, Zhang Z, Wen P, Pan M X, Zhao D Q, Wang W H, and Wang W L, Appl. Phys. Lett. 82 (2003) 4699. https://doi.org/10.1063/1.1588367

    Article  CAS  Google Scholar 

  30. Frey M, Busch R, Possart W, and Gallino I, Acta Mater. 155 (2018) 117. https://doi.org/10.1016/j.actamat.2018.05.063

    Article  CAS  Google Scholar 

  31. Gao Q & Jian Z, J. Mol. Liq., 296 (2019). https://doi.org/10.1016/j.molliq.2019.111962

  32. Lu Z P, Li Y, and Liu C T, J. Appl. Phys. 93 (2003) 286. https://doi.org/10.1063/1.1528297

    Article  CAS  Google Scholar 

  33. Lu Z P, Li Y, and Ng S C, J. Non-Cryst. Solids 270 (2000) 103. https://doi.org/10.1016/s0022-3093(00)00064-8

    Article  CAS  Google Scholar 

  34. Nishiyama N, and Inoue A, Acta Mater. 47 (1999) 1487. https://doi.org/10.1016/s1359-6454(99)00030-0

    Article  CAS  Google Scholar 

  35. Fiore G, and Battezzati L, Adv. Eng. Mater. 9 (2007) 509. https://doi.org/10.1002/adem.200700049

    Article  CAS  Google Scholar 

  36. Chen H S, J. Non-Cryst. Solids 29 (1978) 223. https://doi.org/10.1016/0022-3093(78)90116-3

    Article  CAS  Google Scholar 

  37. Kato H, Wada T, Hasegawa M, Saida J, Inoue A, and Chen H S, Scripta Mater. 54 (2006) 2023. https://doi.org/10.1016/j.scriptamat.2006.03.025

    Article  CAS  Google Scholar 

  38. Haruyama O, Watanabe T, Yuki K, Horiuchi M, Kato H & Nishiyama N, Phys. Rev. B, 83 (2011). https://doi.org/10.1103/PhysRevB.83.064201

  39. Chen HS, Sci. Rep. Res. Inst. Tohoku Univ. A, 27 (1979) 97. http://hdl.handle.net/10097/2

  40. Kawamura Y, and Inoue A, Appl. Phys. Lett. 77 (2000) 1114. https://doi.org/10.1063/1.1289502

    Article  CAS  Google Scholar 

  41. Chen H S, and Turnbull D, J. Chem. Phys. 48 (1968) 2560. https://doi.org/10.1063/1.1669483

    Article  CAS  Google Scholar 

  42. Jiang HR, Bochtler B, Riegler SS, Wei XS, Neuber N, Frey M, Gallino I, Busch R & Shen J, J. Alloys Compd., 844 (2020). https://doi.org/10.1016/j.jallcom.2020.156126

  43. Jiang H R, Bochtler B, Frey M, Liu Q, Wei X S, Min Y, Riegler S S, Liang D D, Busch R, and Shen J, Acta Mater. 184 (2020) 69. https://doi.org/10.1016/j.actamat.2019.11.039

    Article  CAS  Google Scholar 

  44. Bochtler B, Gross O, Gallino I, and Busch R, Acta Mater. 118 (2016) 129. https://doi.org/10.1016/j.actamat.2016.07.031

    Article  CAS  Google Scholar 

  45. Ding D, Xia L, Jo C L, and Dong Y D, J. Mater. Sci. 41 (2006) 6112. https://doi.org/10.1007/s10853-006-0477-x

    Article  CAS  Google Scholar 

  46. Park ES, Na JH & Kim DH, Appl. Phys. Lett., 91 (2007) 031907. https://doi.org/10.1063/1.2759266

  47. Borrego J M, Conde A, Roth S, and Eckert J, J. Appl. Phys. 92 (2002) 2073. https://doi.org/10.1063/1.1494848

    Article  CAS  Google Scholar 

  48. Venkataraman S, Biswas K, Wei B C, Sordelet D J, and Eckert J, J. Phys. D: Appl. Phys. 39 (2006) 2600. https://doi.org/10.1088/0022-3727/39/12/020

    Article  CAS  Google Scholar 

  49. Mitrovic N, Roth S, and Eckert J, Appl. Phys. Lett. 78 (2001) 2145. https://doi.org/10.1063/1.1361099

    Article  CAS  Google Scholar 

  50. Lu Z P, Tan H, Ng S C, and Li Y, Scripta Mater. 42 (2000) 667. https://doi.org/10.1016/s1359-6462(99)00417-0

    Article  CAS  Google Scholar 

  51. Xia L, Shan S T, Ding D, and Dong Y D, Intermetallics 15 (2007) 1046. https://doi.org/10.1016/j.intermet.2006.12.008

    Article  CAS  Google Scholar 

  52. Xu T, Jian Z, Zhuo L, Chang F, Zhu M, Liu Y, and Jie Z, Int. J. Chem. Kinet. 53 (2021) 815. https://doi.org/10.1002/kin.21484

    Article  CAS  Google Scholar 

  53. Xu T, Jian Z, Zhuo L, Zhang L, Chang F, Zhu M, Liu Y & Jie Z, Thermochim. Acta, 697 (2021). https://doi.org/10.1016/j.tca.2020.178858

  54. Fontana G D, and Battezzati L, Acta Mater. 61 (2013) 2260. https://doi.org/10.1016/j.actamat.2012.12.045

    Article  CAS  Google Scholar 

  55. Ruocco G, Sciortino F, Zamponi F, De Michele C, and Scopigno T, J. Chem. Phys. 120 (2004) 10666. https://doi.org/10.1063/1.1736628

    Article  CAS  Google Scholar 

  56. Senkov ON, Phys. Rev. B, 76 (2007). https://doi.org/10.1103/PhysRevB.76.104202

  57. Sipp A, Bottinga Y, and Richet P, J. Non-Cryst. Solids 288 (2001) 166. https://doi.org/10.1016/s0022-3093(01)00527-0

    Article  CAS  Google Scholar 

  58. Waniuk T A, Schroers J, and Johnson W L, Appl. Phys. Lett. 78 (2001) 1213. https://doi.org/10.1063/1.1350624

    Article  CAS  Google Scholar 

  59. Zheng Q, Xu J & Ma E, J. Appl. Phys., 102 (2007) 113519. https://doi.org/10.1063/1.2821755

  60. Yuan Z Z, Chen X D, Wang B X, and Chen Z J, J. Alloys Compd. 399 (2005) 166. https://doi.org/10.1016/j.jallcom.2005.03.026

    Article  CAS  Google Scholar 

  61. Biswas K, Ram S, Schultz L, and Eckert J, J. Alloys Compd. 397 (2005) 104. https://doi.org/10.1016/j.jallcom.2005.01.023

    Article  CAS  Google Scholar 

  62. Raju S, Kumar N S A, Jeyaganesh B, Mohandas E, and Mudali U K, J. Alloys Compd. 440 (2007) 173. https://doi.org/10.1016/j.jallcom.2006.09.058

    Article  CAS  Google Scholar 

  63. Zhou X, Zhou H, Zhao Z, Liu R, and Zhou Y, J. Alloys Compd. 539 (2012) 210. https://doi.org/10.1016/j.jallcom.2012.06.035

    Article  CAS  Google Scholar 

  64. Wu J, Pan Y, Huang J, and Pi J, Thermochim. Acta 552 (2013) 15. https://doi.org/10.1016/j.tca.2012.11.012

    Article  CAS  Google Scholar 

  65. An W K, Xiong X, Liu Y, Li J H, Cai A H, Luo Y, Li T L, and Li X S, J. Alloys Compd. 486 (2009) 288. https://doi.org/10.1016/j.jallcom.2009.06.134

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Natural Science Foundation of China (number 51971166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengyun Jian.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Jian, Z., Zhu, M. et al. Study on Glass Transition Temperatures in Metallic Glass Formers. Trans Indian Inst Met 76, 2931–2939 (2023). https://doi.org/10.1007/s12666-023-02949-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-02949-7

Keywords

Navigation